Charting Java

Mary Cosway and Andrea di Pietro

August 14, 2002

Special Thanks for the support given by Vincent and Jerome.

Copyright © by Haiko Schmarsow. All rights reserved. This publication or any part of it may not
be reproduced, stored in a retfrieval system, or transmitted, in any form or by any means, elec-
fronic, mechanical, photocopying, recording, or otherwise, without the prior written permission by
the owner of the copyright. The copyright and the statements in the following paragraphs ex-
tend to the downloadable data offered under the domain-names www.chartingJava.org and
www.chartingJava.com

The use of general descriptive names, registered names, trade names, frademarks, etc, in this publi-
cation, even if the former are not especially identified, does not imply that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

All names and services identified throughout this book, also those which are, or which are related, to
tfrademarks or registered frademarks of their respective companies, are not used to convey endorse-
ment or other dffiliation with this publication.

This publication is provided “as is” without warranty of any kind, either express or implied, includ-
ing., but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or
non-infringement. The publisher or owner of the copyright assumes no responsibility of any kind for
errors or omissions and ensuing damages resulting from the use of the information contained in this
publication.

Written with LyX, the lafest version used was 1.1.6fix2, figures and images were realized using Xfig 3.2
and Gimp Version 1.2 on a Linux/KDE platform (SuSE 7.2).

Publisher, holder of copyright and contact for feedback is (June 2002) Haiko Schmarsow
(haiko@schmarsow.de)

ISBN 3-00-009429-6

ISBN 3-00-009429-6 www.chartingJava.com 3

www.chartingJava.com ISBN 3-00-009429-6

Contents

Preface 17
This Book o e e e e e e e e e e e e e 18
Structure L e e e e e e e e e 18
Content L e e e e 18
Limitations e e e e e e e e e e e 20

The Reader L e e e e e e e e e e 20
The Authors e e e e e e 21
Conventions L e e e e e e e e 21

I. Computer-Models 23
Elementary Computer-Models 27
A Computer-Model for Programmers e e e e 28
Computers with Multiple Processors and Networks 30
Summary: Computer-Models e 30

A Computer-Model for Hardware Technicians, 30
Processor-Commands, Languages 33
Bits and Bytes used For Coding Human Readable Symbols and Numbers 33
Commands on Processor-Level: Machine-Language and Assembler 35
Languages for easier Coding 37
Language-Processing: Interpreting, Compiling, Virtual Machine 38
Languages: High-Level-Concepts e e e e e 40
Operating-Systems 43
File-Systems o e e e e e e e e e 46

Il. The Java Runtime Environment 49
Installing Java Development Kits (JDKs) 59
Preparations: Generalities on (Downloading) and Installation 59
PATHand CLASSPATHor Unix/Linux or Windows-based Operating-Systems 60
ORGANIZE: Apple Mac OS e e e e e e 61
ORGANIZE: Mac OS 9.x: Installing the Java Development Kit (JDK): 61

ORGANIZE: Mac OS 9.x: Using the Java Development Kit (JDK) 61

ORGANIZE: BeOS e e e e e e e e e e e 62
ORGANIZE: LINUX . . . o o o o e e e e et e 62
ORGANIZE: Linux: Getting the Java Development Kit (JDK): 62

ORGANIZE: Linux: Using the Java Development Kit (JDK): 62

ORGANIZE: Windows o it i i e 63
ORGANIZE: Windows: Installing the Java Development Kit (JDK): 63

6 Contents

ORGANIZE: Windows: Using the Java Development Kit (JDK): 63

ORGANIZE: Development-Environmentseie... 64
Organize: Extending Java e e e e e e 64
How Java Code is Run 65
Compiling Source-Code o e e e e e e e 65
Running Programs/Applications e 65
Running Applets. 0 e e e e e e e 67

lll. Basic Programming |

The Language and Utilities 69
Hello World Program e e e e e e e e e 71
Data-Storage — Data-Structures 73
Concept: Literal, Type, Name and Variable, 73
Data in Form of Literals — What is stored in the computer memory? 73
Type or Class of Literals — How is it stored into the computer memory? 73
Identifier, Name — Where is it stored in the computer memory? 73
Concept: Declaration, Allocation, Instantiation of a Variable 74
Concept: Statically-, Dynamically-, Runtime-Typed Programming-Languages 75
Java: Declaration, Allocation, Instantiation: Examples and Outlook 75
dJava: Literals e e e e 77
Integer-Literals e e e e e e e e 77
Floating-Point-Literals e e e 78
Boolean-Literals e e e e e 79
Character-Literals e e e e e e e e 79
String-Literals e e e e e e 81
Java: Identifier, Name e e e e e e e e e 81
Naming Conventions e e e 83

Java: Primitive-Types i i e e e e e e e e e 83
Logical Type e e e e e e e e e e 84
Numeric Type i o e e e e e e e e e e e e e e e 84
Integral Types i e e e e e e 85
Floating-Point Type o e e e e e 86

Java: Declaration, Instantiation of Variables with Primitive-Type 87
Java: Type-Casting I e e e e e e e 87
Processing Data 89
Concept: Expressions, Statements, Control Structures 89
dJava: EXpressions e e e e e e e e e e e e e e e e e e e 90
Operator Expressions — Calculate, Compare and Change 92
Increment/Decrement and Prefix Operators 92

Arithmetic: Multiplicative Operators. it 93
Arithmetic: Additive Operators 94
Arithmetic: Roots, Exponentials, Logarithms and Powers 94
Non-Arithmetic: String Concatenation. 95

Bitwise: Shift-Operators e 95
Non-Arithmetic: Relational Expression 96
Un/Equality: Comparison Operators, 96

Bitwise and Logical Operators (Single Character: &2, 1) 97

6 www.chartingJava.com ISBN 3-00-009429-6

Contents 7

Logical Operators (Double Characters: &&,11) 98
Conditional-Operator e e e 99
Assignment Operators e e e 99
Type-Casting II (Casting of Primitive-Types) 100
Type-Casting implicit e e 100
Type-Casting explicit e e e 100
Precedence e e e e e 101
Java: Statements, Control Structures and Programs 103
Java: Statements L e e e e 103
Block . . . e 105
dJava: Branching e e 105
Binary Branching — If-Statement 105
Multiple Branching/Cascading — Switch-Statement 106
Java: Looping, Iteration e 108
Post-condition Loops — While, For-Statements 108
Pre-condition Loops — Do-Statement 109
Restricted Jumping — Break, Continue-Statements — Pre- and Post-Condition Mix . 110
Restricted Jumping — Try-Catch-Finally 112
Structuring Code: Proceduralization 115
Concept: Methods are more than Named Blocksof Code 115
dJava: Methods e e e 116
Java: Method-Declaration e 117
dJava: Method-Call e e 118
Concept: Method-Call Arguments — Transfer By-Value or By-Reference 119
Java: Local Variables - Scoping and Shadowing 1 121
S0P . v e e e e e e e e e e e e e e e 122
Shadowing Variables with Methods 123
Concept and Java: Overloading, Recursion, Callback 124
Overloading Methods e e 124
Recursion of Method-Calls e e e 125
Callback of Methods o e e e e e e e e 127
Concept: Triggerable-Methods Or Who calls the main() -Method of an Application? 127
Summary and Outlook: Proceduralization 128
Structuring Code and Data: Object-Orientation 131
Concept: Object/Class-Model e e e e e e e e e e e 131
Example: Object, Class and Class-Hierarchy 132
Overriding Methods and Shadowing Variables 135
Class-Extension — Inheritance with multiple Super-Classes 136
Communication-Mechanisms e 137
Object/Class-Model Keywords et e et ee e 138
Concept: Object/Class-Model within Programming-Languages 140
Java: Classes as Programmer-Definable Types and Programs 142
Java: Reference-Types and their Instantiation with the new-Keyword 142
dava: Classes e e e e e e e 145
Java: Class-Declaration e 145
Java: Class-Instantiation/Object-Creation 149
Java: Defining Constructors i i e 149
Java: Class-Instantiation with Constructors and Factory-Methods 150

ISBN 3-00-009429-6 www.chartingJava.com 7

8 Contents

dJava: Class- and Object Lifespan i et 151
Java: Introducing and Accessing Class- and Instance-Members 154
dJava: Kinds of Classes o i i i i i i e e e e e e 157
Java: Anonymous Objects and -Classes 159
Singleton L L e e e e e 160
Comparing Objects 0 e e e e e e e e e e e e e e e 161
dJava: Identity of Objects e e 161
Concept: Equality of Objects e e e e e 162
dJava: Comparing Objects (1) o e e e e e 162
Java: Class-Extension e e 163
The Class java.lang.Object e e e e e 164
Class-Extension: Member-Access i it e e e e e 165
Java: Class-Extension with Constructors and Finalizers 166
Java: Overriding Methods and Shadowing Variables(2) 167
Java: Type-Casting III (Casting of Reference-Types) 169
Object to Primitive-Typeand Reverse 169
Type-Casting among Identifiers of Reference-Type: Widening and Narrowing 169

Java: Validity of Identifiers: Scoping and Access-Control 171
Un-Shadowing and Un-Overriding 172
Un-Shadowing and Un-Overriding FROM INSIDE AN OBJECT 172
Un-Shadowing and Un-Overriding FROM OUTSIDE AN OBJECT 174
Access-Control e e 175
Modifiers and Accessibility L e e e e e e 180
Java: Other Modifiers. e e e e e 181
Java: Class-Extension with Abstract Classes and Interfaces 183
Java: Abstract Classes and Abstract Methods 183
dJava: Interface-Type e e e e 185
dJava: Comparing (2) and Copying v v v v v v i it e e e e e e e e e 190
Summary: Object-Orientation andJava Classes 193
dJava and the Class-Concept e e 194
Concept: Polymorphism/Monomorphism e i... 194
Concept: Encapsulation e 195
Structuring Code: Multithreading 197
Concept: Concurrency and Parallel Computing, 197
Concept: Threads e e e e e e 198
Concept: Scheduling of Threads (Non-/Preemptive and Priorities) 200
Java: Basic Thread Resource Distribution on a Java Platform 203
Java: Handling Single/Isolated Threads 0..... 205
dJava: Spawning a Thread e e 206
Thread -Object containsrun() -Method 207

run() -Method in Anonymous Class 208

Thread -Object and run() -Method in DifferentClasses 209

Thread -Object is Member in Class of run() -Method 209

Basics of Controlling a Single Thread 210
Concept: Handling Multiple/Communicating Threads 213
Concept: Atomicity and Exclusive Access (Locking) 213
Concept: Waiting e e e e e e 215
Java: Handling Multiple/Communicating Threads 216
Java: Isolating Code and Data from other Threads 216

8 www.chartingJava.com ISBN 3-00-009429-6

Contents

Dangers: Starvatio

L

Dangers: Race-Conditions e e

Dangers: Deadlock
Dangers: Lifelock

Concept: Pragmatics in Thread-Specific Programming

How can Threads interact elementary on a Level above Scheduling?

A Multithreaded Application

Concept: Multiprocessing and Multithreading
Concept: Blocking and Non-Blocking Methods

Summary: Multithreading . .

Concept and Java: Aggregation
Java: Arrays and Array-Type
Java: Vectors
Java: StringTokenizer
Java: Collection-Framework .
Transforming Aggregates . .

Structuring Code: Packaging

of Data

Java: How to Write and How to Installa Package

How to install a pre-written Package

How to use an installed Package

Package Introspection

Compilation, Packages and Compilation Units

Summary: Packages

Standard Code-Libraries: Pre-programmed Packages

Pre-programmed Packages . .

Core-Classes and the Java Runtime System: Location/Content
javallang : Some Standard Classes i e e e e e

Platform and Runtime Environment e

Internationalization - Localization e

Identifying Locality with j

ava.util.Locale -Objects,

Example: Calendar and TimeZone ittt
Example: Resource-Bundle

Character Codes and Fonts .

Java: Encodingsand Fonts e

IV. Basic Programming I

Internal Communication
Java: Communication: Introducing Classes across Files of Source-Code

Communication: Messaging and Streaming
Concept: Basic Communication-Models

Message-Model
Stream-Model

Operating-System/Runtime System: Sockets for Input and Output

Protocol-Model
Initial Triggering

Practical Event-driven Communication i i i i i e e e e

ISBN 3-00-009429-6

www.chartingJava.com

220
223
224
224
225
226
226
227
228
228
230
231
232

233
234
236
237
237
237

239
240
243
244
245
246
246

249
249
249
252
258
259
260
261
263
265
266

267
269

271

271
271
272
273
274
275
2717

10 Contents
Code Structuring: Messaging 279
Java: Implemented: Communication by “Throwing Objects” 279
Source: Who throws How from Where? 279
What is thrown? e e e e e e 280
What’s the Switchboard-Mechanism and Who catches? 282
Summary: “Throwing Objects” e e e e 284
Java: To be Implemented: Observable -Class and Observer -Interface 284
Java: Event Model — A Mechanism fully to be Implemented 286
SOUrce e e e e e e e e e 287
Event e e e e e e 288
Drain e e e e e e e e 288
Trigger e e e e e e e e e e e e e 288
Trivial Example e e e e 288
Remarks about Non-Trivial Extensions 289

Concept: Streams in Java 291
Java: Streams 295
Java: Runtime Input/Output-Streams e 297
Java: Piping with Streams e e 300
Java: Moreondava Streams e e e e e e e 301
Java: Filtering and Formatting with Streams 303
Java: Serialization of Objects, Persistence e 306
Summary: Streams e e e e e e e e e e e e e 310
Code-Structure: Software-Components 311
Concept: Software-Components e e 311
Concept: Object-Oriented Approach to Software-Components 311
Java-Beans: Software-Componentsindava 313
Standard Property e e 313
Indexed Property e e e e e 313
Event-Communication between Software-Components 314
Bound and Constrained Properties e 314
Persistence (of Objects) o i e e e e e e e 318
Software-Design using Components with Reflection and Introspection 318
Summary: Software-Components e e e 318
Persistence 321
Documenting and Archiving Code 323
Comments and Documentation e e e 323
dJava: JavadoC e e e e e e e e e e e 324
dJava: jar -Tool for Archiving e e e 325
Java: Running Java Byte-Code e e e 326
Summary: Java Messaging 329
Thread-Communication i e e e e e e e 329
Exception Throwing e e e e e e e e 329
Observable/Observer-Mechanism 0 0t ettt e e e e 330
Framework: java.util. EventObject , java.util.EventListenero oL, 331
Java-Beans — Software-Components. i e e 331
Abstract Windowing Toolkit (AWT) and Swing i i i i it e et 331

10 www.chartingJava.com ISBN 3-00-009429-6

Contents 11

Summary: Java Language 333

V. Communication between Computers

Networks and Distributed Computing 335
Concept: Classification of Computer-Networks 339
Maximal Number of Hosts and Network-Graph. 340
Geographic Extension. e e e e e 340
Quality of Service QoS (Flow Capacity, Load and Reliability) 341
Communication in a Network — Protocols 341
How are the (Host) Computers identified in a Network? (Host Identification) 342

Inside the Network, how to find the Path from the Source of the Data to the Drain?
(Pathfinding) e e 342

How is the Data actually sent, in what Form does the Data pass the Network? (Path
USing) . . . v i e e e e e e e e 342
Concept: Logical Connections, Virtual Networks 343
Concept: Data-Transfer with Packets and through Channels 345
Concept: Protocols and their Layer-Model 347
Protocol and Type e e e e e e 347
Layers of Protocols e e e e 347
More Classifying Criteria for Protocols 349
Client-Server, Peer-to-Peer Communication i i ittt i e 352
Communication within the Same Levels of the Layer-Model 353
OSI-related Layer-Model 0 i i e e e e e e e e e 353
Networking-Protocols 357
The Internet Protocol (IP) — a packet-routing-, connectionless Protocol 357
IP-Addressing of Hosts e e 357
IP-Addressing of Hosts: Domain Name Service (DNS) 359
TCP/UDP Transport-Protocols e e e e e e e e e 362
TCP - The Transmission Control Protocol — connection- and packet-oriented 363
UDP - The User Datagram Protocol — connectionless and packet-oriented 363
Addressing in TCP/IP-networks: Socketsand URLs 363
Application-Protocols (HTTP, FTP, ...), Types and Network Applications 367
Universally Recognizable Typesand Formats 368
HTTP (Hypertext Transfer Protocol) the Protocol of the WWW 369
Hypertext e e e e e e e e 371
Copying Files over the Network it e i 371
Private Mail e e e e e e e 371
Other Applications 0 i it e e e e e e e e e 371
Triggering: URL- Network-wide Invoking of Application-Services 373
Uniform Resource Locator (URL) — An Introduction 373
URL-Encoding i e s e e e e e e e e e e e 375
Summary: Internet- and Transport-Protocols, Addresses, Domain-Names 377
ORGANIZE: Your Network-Connection ity 378

ISBN 3-00-009429-6 www.chartingJava.com 11

12 Contents

Java: Programming in Networks 381
Java: Relating IP-Address, Host-Name and Owner-Information 381
Java: UDP Sockets and Datagrams i i ittt e e e 384
Java: TCP-Sockets and Network-Connections. 385
Java: URL, Application-Protocol- and Content-Handlers for CLIENTS 388

java.netURL — The Default Mechanism 390
Java-Concept: Uniform Resource Locator in Client-side Connecting to a Network 390
Optional: java.nettURL — The Potential 391
Java: Applets as Programs in a Client-Side-Controllable Environment 396
Applet-Concept e e e e e e e e e e 397
Applet-Infrastructure e e e e e 397

A Simple Applet e e e e e e 399

Organize: Browser with Java Runtime Environment: ToDo 400

Applet Threading e e e e e 401
Applet Introspection e e e e e 402
Applet Communication e e e e e e e 403
Java: Servlets / (CGI) e e s 405
Servlet-Concept L e e e e e e e 406
Servlet-Infrastructure e e e e 407

A Simple Servlet e e e e 408

Organize: Install Server with Servlet-Container: ToDo 409

Organize: RunaServlet e 410

Servlet Threading e e e e e e 411
Servlet Introspection e e e 411
Servlet Communication. e e e e 412
HTTP-Servlet Extension ettt e 413
Java: Remote Method Invocation (RMI)/ (RPC) @ o i i i i e e e e 414
Organize: JRE-Extension: What is needed for a RMI-Connection? 415
ARMI-Connection o i i i i e e e e e e e e e e e e e 416
How is the Remote Method Invocation Service activated? 418
What more? e e e e e e e e e e e 419
Outlook: Java and Networking e e 419

Summary: Java Communication 421

Concept: Distributed Computing and Programming 423

VI. Java Runtime Environment and Security 425

Concept/Java: Scope, Access-Areas, Name-Spaces 429

Java: Runtime Environment 431
Class-Loading i it e e e e e e e e e e e e e e e e e e 433

Class-Loading: The Initial Process, 434
Class-Loading: The Secondary Process 435
Class-Loading: Customized Class-Loaders. 438
java.lang.ClassLoader — Simple Extension 438
java.net.URLClassLoader — Simple Instantiation 438
The Full Loading-Process of Instances derived from java.lang.ClassLoader ... 440
Maximally programmer implemented Class-Loader 441

12 www.chartingJava.com ISBN 3-00-009429-6

Contents 13

Class-Loaders of Arrays? i i it et e e e e e 443
Simple Class-Loading: new-Keyword and the Class.forName() -Method 443
Object Storing and Loading: Serialization 443
RAM Recycling: Garbage-Collection and Weak References 444
Security: Basic Concepts 447
Java Language- and Java Compiler-Security 450
Java Runtime Security L e e e e e 451
Security: Policy-Based 453
Java: Access-Control Mechanism e 453
Secure Class-Loaders and Protection-Domains 454
From File to Policy -Object e 455
Security-Manager and Access-Controller. 455
Java User and Administrator 457
Text-File: java.Security e e e e e e e e 457
Policy Text-Files o i e e e e e e e e e e e e e e 458
Selecting Policies for Running Applications and Applets 460
Some Practical Hints e e e e e 461
dJava Programmer e 462
dJava Security-Manager L e e e e e e e e e 462
The check...() -Methods of the Security-Managers 463
User and Administrator Use of a Security-Manager 465

Why a Security-Manager if there is an Access-Controller for consulting an External
Policy? e e e 465
dJava Access-Controller: Policy e e e e 465
Java Access-Controller: Custom Permissions 467
Java Access-Controller: Protection-Domain 467
Java Access-Controller: Method-Call History 470
Java Access-Controller: Privileged Code e 471
Java Access-Controller: Policy-Secured Environment extends to Objects 474
Applets and Security e e e e e e e 475
Summary: Policy-Based Access-Control Mechanismsindava 475
Security-Related Coding of Data 477
Basic Concepts of Security through Data-Processing 477
Social Aspects: TRUST e 478
Concepts: Some Results of the Mathematical Theory 478
Cryptography with a Secret Key (SymmetricKey) 478
Cryptography with a Public/Private Key-Pair (AsymmetricKey) 479
Hashcode - Message-Digest - Digital Fingerprint - Checksum 481
Signing/Authentifying a Message Using Encrypted Message Digests 482
Securely Associating an Identity with the OwnerofaKey 483
Variants of an Encryption Algorithm (Modes and Padding) 484
More Concepts v v i e e e e e e e e e e e e e e e e 484
Java Provider-Infrastructure: Concept and Implementation 485
User/Administrator: Key-Management and Signing Files 488
Access-Controlling with Signed Data 492
User/Administrator: Howtoencrypt Files 492
Application-Programmer: Signing and Encrypting 492
Installing the Java Cryptography Extension JCE). 496
Usingthe JCE 0 e e e e e e e 496
Infrastructure-Programming: Signing and Encrypting 497
Concept: Network-Security o e e e e e e 500

ISBN 3-00-009429-6 www.chartingJava.com 13

14 Contents

VII.Single User Interface 503
Concept: User Interfaces 507
Hardware User Interface e e 507
Graphical User Interfaces (of Operating-Systems) 508
Graphical User Interface of Operating-Systems: Desktop - Icons - Windows 508
Graphical User Interface of Operating-Systems: Screen-Components 510

OS-GUI: File-System: Opening Files and Folders 510

GUI: Giving Commands: Clicking - Drag and Drop (D&D,dnd) 510

GUI: Giving Commands: MenuBars - PopupMenus - Toolbars 511

GUI: Windows as Containers of Screen-Components. 512

Graphical User Interface of Application-Software 512
Design of Graphical User Interfaces (GUIs), 513
Concept: Programmer’s View of User-Interface (Ul) 515
Program-Structure: Model View Controller MVC) 515
Screen Output 519
Concept: Computers and Images e 520
The Concept of Image-Formats 521
Concept: Colors e e e e e e e e 522

The RGB Color-Model e 523

The CMY Color-Model e et e 524

The CMYK Color-Model solves the Printing-Problem: C+M+Y#Black 525

The HSV and HSB Color Models 525

Two Basic Image- and Color-Formats 525
Direct Color-Model: ARGB 526

Indirect Color-Models e 526

Java: Transparency, Partial Transparency and Opaqueness 527

Java: java.awt.Image . . . L L e e e e e e e e e 527
Java: Simple Bitmapped Images e e 530
Concept: Graphical-Objects e e e e 534
Painting Graphical-Objects e e 536
Java: Object-Painting on Screen-Components 538
Concept: Screen-Components i e e e e e e e e e 540
Java: Basic Swing Screen-Components. e e 543
Lightweight-/Heavyweight Components — Java: AWT versus Swing 548
Platform and Java Runtime Points-of-Contact 551
Java: Basics of Screen-Components. e e 551
Java: java.awt.Component L L e e e e e e e e e e e e e 552
Java: java.awt.Container . . L L L e e e e e e e e e e e e e e e 556
Java: javax.swing.JCOMPONENt L e e e e e e e e e e e e e 559
Java: Frame and JFrame e e e e 561
AWT and Swing Class-Hierarchies 0 i i i e e e e e e e e e 564
Java: ContentPane and JLayeredPane e 566
dJava: Fonts e e e e 569

14 www.chartingJava.com ISBN 3-00-009429-6

Contents 15

Event-Communication - Mouse and Keyboard 571
Event Delegation within the Abstract Window Toolkit (AWT) 571
Concept: Mouse Interaction e 571
Concept: Keyboard Interaction ittt i.. 572

Java: The AWT-Event-Communication 0.iee.... 572
Java: Delegation Event-Handling i e e 574
dJava: Triggering e e e e e e e e e e e 574
Java: Switchboarding/Event-Scheduling, 574
dJava: Event Types e e e e e e e e e 575
Java: Sources, Event-Objects, Sinks (Listeners). 576
Summary: Java Variants of Event-Listening 579
Java: Adapter-Classes e e e e e e e e e e e e 580
Java: Examples for Mouse- and Keyboard Event Handling 581
AWT-Switchboarding and Java e e e e 585
Using the Event-Dispatch-Thread 586
Java Programmer: Sources of AWTEvent-Objects 590
Java: processEvent() -Method as Drain and Source of AWTEvent-Objects 592
Interaction: Screen, Keyboard and Mouse 595
Java: Changing Components and ImagesOn-Screen 595
Java: Painting-Methods e e 595
Pixel-Based Images e e e e 596
Graphics-Objects e e e e 597
Screen-Components L e e e e e e e e e e 597
Summary: Drawing On-Screen e e 599
Java: User Changes User Interface 599
dJava: Animation L e e e e e e e e e e e e e 602
Concept: Time-Delayed Processing i it e 605
Java: Time-Delayed Data e e e e e 606
Java Overview: Interfaces and Classes for Time-Delay 606

The Workings of an ImageObserver -Object 607
java.awt.image.ImageProducer L e e e e e e e 610
java.awt.image.ImageConsumer e e e e e e 610

dJava Swing Desktop L e e e e e 610
Java: Applets - Applet Runtime-Environment 613
Triggering And Configuring an Applet-Run 614
Class-Hierarchy and Class-Structure of Applets 615
A Simple AppletViewer e e e e e e e e e e 619

Summary: Graphical User Interfaces (GUIs) 621

Outlook: Single User Interface 623

VillAppendix 625

Reflection, Infrospection and Profiling 629

ClassSes . . . v v i e e e e e e e e e e e e 629
Objects o e e e e e e e e e e 630
System e e e e e e e e e e e 631
Applets . . L e e e e e 631
Serviets e e e e e e e e e e e e 631

ISBN 3-00-009429-6 www.chartingJava.com 15

16 Contents

How to read Programs? 633

How to write and check Programs? 637

If Something goes Wrong i i i i i e e e e e e e e e e e e e e 637

How to make Programs faster? 639

Further Questions 641

List: Prototypes of Programs 645

Primitive-Types and Control Structures 645

Code Structuring: Proceduralization-Methods 645

Code- and Data-Structuring: Object-Orientation: Class-Object 646

Code Structuring: Object-Orientation: Class-Extension 646

Code Structuring: Multithreading, 646

Code Structuring: Aggregation: Arrays and Container-Classes. 647

Code Structuring: Packaging and Libraries 647

Communication: Messaging e 647

Communication: Streams and Pipes, Serialization (package java.io) 647

Communication: Component/Bean-Based Programming, Documentation 648
Communication: Computer-to-Computer: IP (Internet Protocol)-Networks

(packagejava.net) e e e e e 648

Java Runtime Environment, Class-Loading and Security: Class-Loading 649

Java Runtime Environment, Class-Loading and Security: Policy-Based Security . . . 649

Java Runtime Environment, Class-Loading and Security: Security by Data-Processing649
Single User Interface: Graphical User Interface (GUI)

(package java.awt ,javax.SWiNng) . . . v v vt e e e e e 650

Appendix e e e e e e e e 651

List: Mentioned Packages, Classes and Interfaces 653
List: Syntax-Diagrams 655
Backus-Naur Form (BNF) e e e 655
Syntax- or Railroad-Diagrams e 655

List . . e e e 656

Little Classification of some Notions 657
Sources 659
Sources Ondava e e e e e e e e e e 659
Sourceson the Internet e e e e 659
Sources on Programming e e e e e e e e e e e e e e e 659
Literature e e e e e e e 660

16 www.chartingJava.com ISBN 3-00-009429-6

Preface

First are presented some questions and some attempts to answer them:

What is a computer? A machine that can be ordered to process data. The machine gets data and com-
mands from keyboard, mouse, storage-disks, network-connections (like the Internet). The machine stores
the processed data (a fax sent, an email received) on storage-disks and can show it on output devices like
screen or printer. For more see the text beginning with page 28.

What is a program? A program is given by a sequence of commands which tell the computer what to do.
Programmers store programs by writing those sequences of commands into text-files, as if writing a letter
or an email. First examples of a program are given on page 37 and on page 71.

What is an operating-system? A program that organizes technical-related tasks of hardware-management
(allocating storage-space, accessing hard-drives (also called hard-disks), disk-drives establishing fully-
functional network-connections ...). For more see page 43.

What is a platform? The computer hardware together with the working software of an operating-system
is called a computer-platform (this is considered more extensively in the context of operating-systems).

What is Java? The term Java may be heard to be describing the entire virtual platform! given by the
Java Runtime Environment (JRE, past page 51). Or the name Java may be used for the entire Java De-
velopment Kit, a software-kit that enables a programmer to write programs in the Java programming-
language. But the term Java may also denote the Java programming-language. (For more information
on programming-languages see pages around page 37.)

There are several overlapping, sometimes also rather fragmented, approaches to a multi-faceted piece of
knowledge like the Java programming-language:

Handbook view: Notions are presented as far as possible in their strict logical dependence, assuming
that the reader furnishes some familiarity with the concepts. The topics are usually covered exten-
sively in an analytic, often rigid way. The =& =& Java Language Specification [JLS2] may be an
example of a publication with such a view.

Reference view: References collect notions, more or less commented, in a dictionary-like presentation,
sometimes in the form of an index or a glossary. Examples are the ™&) =& Java Platform API
Specification [JPAPIS] or the Java Developers Almanac [JDA].

Practical/Textbook view: Learning with examples that introduce and illustrate concepts. Synthetic ex-
periences and experimenting becomes possible as part of homework problems. The Online Tutorials
on Sun’s Java-related Internet-site (http://java.sun.com) can be seen as examples for this kind
of approach.

Programmed Learning (of practical skills): Learning in a textbook way by predominantly solving tasks
under written guidance. Some certification books may represent examples for this approach. Search
for “Java certification” in the Internet.

Theory-Oriented This means predominantly learning concepts of programming. In this context practical
applications would distract from the central idea. Example: Algorithms (sorting, cryptography,
routing packages of bytes through networks) can be formulated in many different programming-
languages, their ideas remains the same. Many books with the notion “Algorithms” in their title
may fit into this category.

This classification could make a reader aware of the choices and possibilities when searching for informa-
tion. This present text could be classified as a textbook, although within the sections titled “Concept: ...”
this text attempts a theory-related introduction to the notions.

1A computer-platform runs a program, called the Java Runtime System (JRS) that makes the computer mimic another platform:
the so-called Java Runtime Environment (JRE).

17

18 PREFACE

This Book

This book tries to present a reasonable broad approach to computers, networks and Java programming
(Java 2 Standard Edition, Version 1.4. The Java 2 Micro Edition (J2ME) and the Java 2 Enterprise
Edition (J2EE) haven’t been covered here.). As a result of some reading of this book, a beginner should
be able to categorize notions of that field and be ready for learning advanced programming techniques.
The text works as a collection of concepts and their transformation into the Java language. Marginal
or advanced topics have been deliberately omitted. The Java programs presented are prototypes, maybe
inviting to be changed and to be extended by the reader. All in all, the text should give a fast practical
access to the Java language and its basic concepts. This book represents no atlas, rather a collection of
charts.

Structure

The text has been structured into conceptual sections and Java-specific sections. Conceptual sections de-
scribe general notions and give an overall idea of the content. The knowledge of these sections may be
also applicable in non-Java contexts. The Java-specific sections demonstrate the realization of those con-
cepts in the case of the Java programming-environment. — Headers of the parts and sections of the book
denote the main view-point of these passages. Nevertheless some extensions of those main ideas can be
found in other parts of the book. But these extensions are bound to their respective main passage by cross-
references, so that they should be easily relatable. — Many programs have their descriptions added to
the program’s (source-)code as comments. This may better integrate the programs into the text and may
make it straightforward to identify program-specific information. — Concepts and principles are intro-
duced predominantly without referring to any special programming-language. Those paragraphs should
furnish the theory that makes much of the &) =& Java Platform API Specification self-explaining.
(See the concept of color on page 522 which gives some of the basic information used in the Java-class
java.awt.Color) — The text presents simple procedural programs first; the structuring of code with
methods, classes and threads comes later. — To keep the ideas above in a good order, some notions of
the Java language are anticipated at times (especially the construct of a main() -method inside a class-
declaration, being indispensable when writing regular programs.). — All the examples can be refined and
extended and to get practice in Java; the reader may benefit from doing some creative work with them.
— The text allows the reader several lines of access to spot specific information:

e Table of Content

e Index

e Chapter and Section Introductions/Summaries should make a small text-booklet of an overview
e Images as a picture book of ideas

e Most of the gray frames are part of a glossary. Related details can be found in the context of these
gray frames.

e List of classes or interfaces introduced (in the Appendix)
e List of Programs (in the Appendix)

e List of Syntax-diagrams (in the Appendix)

Another approach may be taken by browsing through the text, then checking and maybe even extending
the programs, thereby referencing the text if necessary. A text on the Java Application Programming
Interface (API) available for parallel reading may give details which have been deliberately omitted in
this text. Some of those details also may have been changed at the time this text has been published.

Content

The central parts of that book are basic programming, structuring source-code, communication between
computers, security and single user interfaces:

18 www.chartingJava.com ISBN 3-00-009429-6

THIS BOOK 19

Computer Communication

network connection
modem,ISDN-card,Ethernet—,DSL-connection

Basic Programming
Structuring source—code

Single User Interface

Computer

Security

The first chapters describe the building elements of the Java language-expressions and statements. These
building elements do not differ very much from the basic structures in languages like C/C++, Pascal or
COBOL. — Then chapters titled Proceduralization, Object-Orientation, Multithreading, Packaging and
to a certain extent the chapter about communication (messaging, streaming, component-programming)
consider the structuring of code.

A computer-model is introduced to envision the hardware- and software-context in which Java is running.
Basic programming introduces to basic programming notions (variables and their creation, expressions
like assignment) and their realization in Java. Control structures essentially constitute the acting source-
code (if-then- and loop-statements), the rest of the items describe methods to structure and organize the
code:

Proceduralization means sorting out a relatively independent sub-task and giving that sub-task a name
of its own. This introduces the notion of a Java-method (in Pascal or C/C++ a function or a procedure).
The idea is to give reusable chunks of code a name, and to call that piece of code again as needed
(page 115).

Object-Orientation (page 131) develops the idea of code-reuse in different directions: One aspect means
furnishing data together with the methods to manipulate the data; this also means extending the
notion of a type of a variable. Another aspect means designing code for extensibility as another way
to organize code for reuse. A third aspect means organizing or indexing code in a hierarchy for
easier reference. If larger programming tasks have to be solved in a collaborative approach by several
persons, then object-oriented structuring of code may prove to be an advantageous approach.
Multithreading (page 197) means running independent sub-tasks parallel on multiple processors; and
letting them communicate with each other: This means, for example, that some threads wait for informa-
tion another thread generates.

Packaging (page 239) describes collecting code in a software-library, this just means collecting several
meaningfully-related entities of code (Java-classes) and giving them a common surname for easier refer-
ence.

Leaving the elements of the core language-functionalities opens a field of selected issues: The part about
Communication (page 271) includes a description of how to realize a delegation event-model consisting of
source, message and drain. Throwing objects, especially so-called exceptions or errors, happens within a
Java-internal communication-infrastructure. The concept of a stream may describe a one-way buffer of
incoming- or outgoing data. Wrapping streams includes the idea of “on-the-fly” processing of stream-data
(after reading in-, before writing out the data).

Basics of the CPU-to-CPU communication (computer-networks, page 337) stress TCP/IP-communication.
Java-specifics like Remote Method Invocation (RMI) are introduced.

Part of the text also considers how to turn a file on the hard-drive, maybe downloaded from a network,
into a program ready to be run. This part of activation of program-code is also called “class-loading”
(page 431). The area of computer-related security (page 447) is considered by trying to answer questions
like the following: How to control a user’s access or a fellow program’s access to hardware and software
on a computer-platform, especially in the Java Runtime Environment (JRE), the Java virtual platform.

Finally, single user interfacing (page 507) introduces concepts and examples of how monitor, keyboard,

ISBN 3-00-009429-6 www.chartingJava.com 19

20 PREFACE

mouse interact with Java and the end-user. There, the Model-View-Controller (MVC)-concept describes
another way of structuring Java source-code. The Appendix may be seen as collecting the remainder.

Limitations

This book tries to get the concepts clear and give a basic introduction that helps the reader to get own
programming experiences. The book does not provide exhaustive information on the Java language like
any handbook or reference book. For in-depth systematics see the =™E) =& Java Language Specification
[JLS2] or other Java Language References. Thus, ramifications of the Java language and Application
Programming Interfaces (APIs) are left to be found in the &) =& Java Platform API Specification
[JPAPIS] and inside handbooks on this subject as mentioned in the Appendix. This especially concerns
information which Java version (1.0.1, 1.1, 1.2, 1.3, 1.4) offers which options.

This text presents no in-depth description of standard software-libraries of Java (Application Program-
ming Interfaces (APIs) of Java). For exhaustive information see the books from Addison-Wesley or
O’Reilly. For an index-like compilation of the software-libraries see the online-documentations from Sun
Microsystems Inc. or the Java Developer’s Almanac [JDA].

The book is based on the second edition of the &) ®&E) Java Language Specification [JLS2] and
covers the Java 2 Standard Edition (J2SE) (not the Java 2 Micro Edition or the Java 2 Enterprise
Edition). Only the Java 2 Standard Edition (J2SE) has been considered in this book, aspects of the Java 2
Micro Edition (J2ME) and the Java 2 Enterprise Edition (J2EE) have been omitted. The implementation
and some aspects of the Java design may be subject to criticism; this book has been written in the be-
lief that the drawbacks are well outweighed by the advantages when comparing Java to other existent
programming-environments.

Algorithms (roughly identifiable as the language-independent version of a program), such as sorting
algorithms or cryptographic algorithms, are not described in this text. See the Appendix for hints on
sources of algorithms.

The writing of source-code as presented here, does not show how to organize the writing of a large
software-project. This field is usually treated in books about Object Oriented Design of programming
tasks. No extended discussion of component-software is to be found; neither are mentioned other means
of structuring code independently of a programming-language, for example the UML (Unified Modeling
Language).

Documents, databases, their formats, production and handling, and image-manipulation are not
covered in this text. This means NO DOCUMENT PROCESSING, NO DATABASES, NO IMAGE-PROCESSING.
This text provides no information on how to program text-editors and related tasks (character encod-
ings surpassing the ASCII?-format, the Unicode-format or a Unicode Transformation Format (UTF) for
Unicode-characters, font-management, document-types like the Portable Document Format (PDF), Ex-
tended Markup Language (XML), drag and drop implementation). — Relational- or object-databases are
not mentioned, neither has been introduced the Java DataBase Connection (JDBC), a Java software-
library for accessing data in relational databases with the Structured Query Language (SQL).

References to hard- and software are limited to those products that are likely to be used in a more or less
average home-environment: Mouse, keyboard, monitor. The text assumes that the reader has comfortable
access to a computer, an installed operating-system, at least a dial-up Internet-connection and maybe two
computers connected with each other over, for example, an Ethernet connection. The additional Java
software should be downloadable for free from the Internet. Differences between platforms (Unix-type
like Linux, WindowsN'T/95/98, Mac OS) are not treated exhaustively.

Many of the introduced programs have been tested on 233MHz G3-Mac and Intel-type machines. Gen-
erally the programs are written reduced to the essentialities, so that they should present the gist of the
functionality they intend to demonstrate.

The Reader

A reader might have the following interests or goals: Know what the Java language means and to be
introduced to some of its central capabilities. Wants to get an overview and a short introduction. Wants
to check the prototype programs and use them as a basis for own programming efforts. Know how to
install a working, cost-free Java Runtime System (JRS) and development-environment on Apple, Linux
and Windows platforms. Use another book for learning programming algorithms and other advanced
programming-techniques (for example text- and image-processing or database-programming).

2 American Standard Code for Information Interchange

20 www.chartingJava.com ISBN 3-00-009429-6

THE AUTHORS 21

The Authors

Almost every view on a subject cannot be complete or ignore the descriptor’s point of view. The non-
completeness aspect clearly can be seen by the limited size of the book. The authors point-of-view clearly
sets its limits and preferences. The goal was to establish a foundation from which the wealth of the Java
programming system can be explored without getting lost in too many details.

Conventions

The names of subjects are chosen to avoid unnecessarily specialized jargon. Nevertheless in some contexts
the usage of notions may vary from that chosen in this book. The index and the explanations in the gray
rectangles try to take account of that. The symbol ®&D means, there exists an online-source for further
information and =& =& indicates that this online-source can be considered as highly recommendable
for further reading.

Source-code of the (Java) programming language and the content of text-files are presented in typewriter-
font .

Parts of the text, that represent commands or programs (in typewriter-font), may contain passages
written in i t al i cs or passages parenthesized by “smaller than” (<) and “larger than” (>) symbols. This
indicates that these passages are placeholders for values and have to take a concrete value to give a valid
expression. Often these placeholder-passages indicate what values they expect. For an example see the
graphic past the program-code on page 71. And see the code fragments at the beginning of the section
on the switch-statement on page 107. In the part of the text about networking and HTML-formats, the
“smaller than” (<) and “larger than” (>) symbols are also used as so-called HTML-tags (page 370). In
Bachus-Naur expressions, which should be clearly discernable from HTML-text or terminal-commands
or programs, the “smaller than” (<) and “larger than” (>) symbols indicate that the enclosed entity occurs
one or multiple times (page 655).

Arrows (—), within the text of the gray boxes, denote notions which have been referenced by the index
with a capital letter. In other context, arrows within the text can be substituted by the words “is super-
class of” (see page 615, following the graphic).

ISBN 3-00-009429-6 www.chartingJava.com 21

22

PREFACE

22

www.chartingJava.com

ISBN 3-00-009429-6

Part I.

Computer-Models

23

25

Computer-Models — Wanting to know all about a computer may resemble wanting to know all about a
car. Most people want to use the car for driving, not as an object of study to become a car-mechanic. So,
the average user of a car has limited skills for repairing or servicing the car. To the average user the
car represents just an object that helps to accomplish personal purposes. Therefore, every motorist has a
well-developed set of ideas about a car’s behavior, maybe not as refined as that of a test-driver, but enough
to serve the daily needs well.

The relation between a user of a computer-system and the computer exhibits aspects of the same kind.
The user of a computer-system confines her- or himself to those few skills which are necessary to get the
computer-system’s support in accomplishing the daily real-world tasks. The notion of a computer-model
intends to give this collection of skills and ideas a consistent environment.

The following part of the text considers simpler computer-models, computer-languages, operating-systems
and file-systems. Extensive information about end-user interfaces of various operating-systems can be
found in the last part of this text beginning with page 507.

ISBN 3-00-009429-6 www.chartingJava.com 25

26

26

www.chartingJava.com

ISBN 3-00-009429-6

Elementary Computer-Models

Elementary Computer-Models — First, this table shows different ways to use a computer:

recreationalist uses a computer-game with joystick, CD-ROM, moni-
tor

writer uses a text-formatter with keyboard, monitor, black
and white printer

layouter in press uses graphics-software with scanner, printers

application-programmer uses interpreter, compiler, debugger, | with keyboard and monitor,

component-construction software to pro- | modems
gram: graphics-software, text-formatters
or computer games for an operating-system

environment
utility-programmer programs drivers, assembler, interpreter, | with keyboard and monitor,
infrastructure-programmer compiler, debugger, low-level network- | modems
system-programmer software, operating-systems for a specific

hard- or software

| person, task

uses software | with additional hardware

Different users have different ideas how they access their computers and receive services from their
computers, they have different ideas about their computer’s physical components and software function-
alities. End-users, who want to be helped by the computer in solving some of their real-life-tasks cannot
be required to have the knowledge of a programmer. To be able to discern pure technicalities from skills
for effectively solving real-life-problems with the computer, often requires a considerable knowledge in
advance.

Depending on the software or hardware the user faces, each user assigns the computer-system a different
set of functionalities. Such a set of functionalities can be described coherently by constructing an appro-
priate computing-model. In that sense the model can be used to “explain” the specific computing system
(to the user).

Some computing models are simple, like a computing model for a video

A part of a game player’s computer model 3 h
game. Although the computing-model for the video game tells what can

' e done, it doesn’t reflect complexity and richness of the video display
[*up (@]t be d td t reflect lexit; d rich f the video displ
left right and it does not tell how to acquire the skill to master the game.
[down The more functionalities the software furnishes, the longer the list of
fire commands and the more difficult it may be to remember them. Even

well-designed models have to reconcile contradicting perspectives: Sim-
plicity of design makes learning and standard work fast, complexity of the models slows the learning-
process but adds flexibility, opening ways to more efficient work.

27

28 ELEMENTARY COMPUTER-MODELS

A Computer-Model for Programmers

A Computer-Model for Programmers — For programmers an introductory model of a computer can be
made fairly simple:

ports make input and output posssible
and are addresses of interface hardware

P
processor ﬁ

uses commands

to convert data ——— RAM

stores commands and data
in parts of the processor’s address space

. Computer)

The processor, its address-space, within that space the Random Access Memory (RAM) and the ports are
given here as central notions of a computer-model. Input-data appears in the Random Access Memory
(RAM) of the computer via ports, that occupy address-space which the RAM does not use. Output-data
leaves the computer’s Random Access Memory (RAM) by transferring the data to addresses occupied by
output-ports. The Random Access Memory (RAM) stores the data. Part of the data gets recognized by the
processor as sequences of processor-commands. Thus the processor can convert, manipulate or process

data autonomously. A processor? manipulates, changes data which has been stored in the Random Access
Memory (RAM).

Processor: The piece of hardware inside a computer that manipulates the data it fetches from the Random
Access Memory or hardware-ports. After the processor has fetched and manipulated the data, the new
data is put back into the Random Access Memory or written into a port that represents a connection to
a hard-disk or a computer-network. Multiprocessor-computers have multiple processors built into them,;
their function has to be coordinated by appropriately designed hard- and software.

CPU: Acronym for Central Processing Unit. 1. The processor(s) of a computer; the part of a computer-
hardware that does the main data-manipulation. 2. A Central Processing Unit consists of the micropro-
cessor(s), the Random Access Memory (RAM) and busses that connect both with Input/Output interface-
hardware. 3. An entire personal computer, excluding keyboard and monitor.

Again: The acronym CPU stands sometimes for the processor alone, sometimes for the processor and the
RAM and more seldom even for an entire personal computer (which includes an internal hard-drive but
without monitor and keyboard).

The command-sequences, that make the processor work on the data, are stored together with the data-to-
be-manipulated in the Random Access Memory (RAM).

RAM: Acronym for Random Access Memory. Often simply denoted “memory”. Stores data, which includes
coded information and sequences of processor-commands. Generally, the processor can access each unit of
information of the Random Access Memory directly. Access to data usually happens fast (in comparison
with devices like hard-disks and network-connections). But data residing in Random Access Memory
usually is stored non-persistently, that means the data is lost if not saved to a hard-disk before turning
off the computer’s power.

3Most processors in personal computers are, technically speaking, special integrated circuits — so-called chips — that have been
given a set of very general functions. An integrated circuit is made of a collection of connected transistors and other electronic
elements built into a chip primarily made of crystalline silicon. (“silicone” denotes a rubbery compound of silicon)

28 www.chartingJava.com ISBN 3-00-009429-6

A COMPUTER-MODEL FOR PROGRAMMERS 29

Computer—System:

monitor

|

I—

0o
persistent storage device —
(Hard Disk, CD-ROM,DVD)

network connection
(modem,ISDN-card,Ethernet-,ATM-connec

o
Computer — —
XZ scanner

speakers

keyboard and mouse

mircrophone
camera

A computer-system is made of the computer itself and additional devices like low data-rate input/output computer-
(I/0) devices, for example keyboard and mouse, and higher data-rate I/O devices like monitor, storage system
devices (hard-drive, CD-ROM), printer, scanner, microphone, loudspeakers, camera, modem or network-

card (usually of the Ethernet-technology). The maximal data-rate of the communication-lines between
components of a computer and the maximal data-rate of the components itself determine the performance

of parts or the overall computer-system. (Analogously to a network of several computer-systems which

draws its overall performance from the data-rate of the data-lines and the rate with which the individual
computers can process the data.) That’s much like a system of pumps and pipes for transporting water:

The pipes’ capacities have to measure up to the pump’s power and vice versa.

Computer System: Communication Lines A communication-line, given by a bundle of wires (more than two usu-
—— —] ally around fifty or hundreds), is called “bus”. Those lines are usu-
@ - ally more efficient than the single lines. Busses generally are used be-
tween hardware-components of a computer-system that have to main-
tain a high data-rate. Communication lines of different technologies are
connected either by a “bridge” or by an “interface” (card); that’s an
electrical circuit for establishing the connection between otherwise un-
reconcilable types of communication-lines. If the user is not concerned
with modifying the hardware of the computer, then there won’t occur
many occasions for handling hardware-interfaces.

persis a ice
(Hard Disk, CD-ROM,DVD)

ersistent storage devi
g ‘ monitor H

Above have been described some conceptual similarities of different computer-systems. But different
types of computer-systems differ significantly in technical details. For example, different makes of pro-
cessors take different sets of commands.

Especially the technical development, which furnishes faster and hopefully easier-to-use hardware, makes
older technical architectures obsolete. Consider some averaged performance-data of computer-systems:

| year | processor-speed (roughly in commands per second): | Random Access Memory size: |

1990 20MHz 4MB
1998 200MHz 40MB
2002 2000MHz 400MB

Next to the computer’s internal bus that connects the processor and the Random Access Memory, there are
communication-“lines” within the computer: The PCI (Programmable Communication Interface) with up
to 64 parallel data-lines yielding a data-flow of up to 132MB per second. The EIDE (Enhanced Integrated
Device Equipment) bus with up to 33MB per second. Also, predominantly for adding external hardware
to a given computer, are mentioned the SCSI (Small Computer Systems Interface) bus with up to 40MB
per second for connecting up to seven external devices to the Central Processing Unit. The IEEE1394-line
(also called FireWire or iLink) with up to 50MB per second and the USB (Universal Serial Bus) with up

ISBN 3-00-009429-6 www.chartingJava.com 29

30 ELEMENTARY COMPUTER-MODELS

to 15MB per second as well as the Ethernet hardware with up to 100MB per second. The technological
data is changing and may have changed when this has been published.

The acronym MHz (Mega-Hertz) indicates the processing-speed and the acronym MB (MegaByte) indi-
cates the volume of the data. For what purposes may be possibly needed such information? When buying
a computer, various computer-systems can be roughly compared. Then, using a computer, performance
limits can be assessed, thus making it possible to quantify the volume of the Random Access Memory
(RAM) or to estimate the dimension of a needed storage-device. For example, error-messages like “out of
memory” may get a clearer meaning and may actually result in adding RAM to the computer. For more
on these units see the subsections past the next for “M/Hz”, and for more on the unit of the data-“volume”
(MB) see the page 34.

Computers with Multiple Processors and Networks

Computers with Multiple Processors and Networks — Multiprocessor-computers consist of several pro-
cessors, connected with each other by the fast computer-internal bus-system. These multiple processors
(usually 2, 4, 8, or 16) use more or less the same Random Access Memory (RAM) and usually can ac-
cess the same hardware-ports. Non-expensive consumer computers usually are equipped with only one
processor. But those one-processor-computers can emulate a multiprocessor-environment to allow multi-
threaded programming too (see page 197 for multi-threaded programming in Java).

Networks connect entire computers mostly by
external wiring, for example with versions of
Ethernet-hardware, or even by wireless radio-
connections. These external connections among
in a computer network computers usually do transfer data slower than
allowing software to do distributed computing the internal bus-systems of the individual com-
puter. The difference between a network and
a multiprocessor-computer also can be formu-

Single Processor Computer:

=
:

Multi-Processor Computers:

£l = —— 30 En lated as follows: Each computer in a network
{} has its own Random Access Memory (RAM). In
g {F) g a multiprocessor computer the processor have

to share the Random Access Memory. For more

about networks see the part of this text, begin-
ning on page 337.

Summary: Computer-Models

Summary: Computer-Models — There are imaginable different computer-models; one of those models,
that gives many details independently of the technology, has been presented more extensively: The pro-
cessor takes commands and data and returns transformed data. The Random Access Memory stores
data, part of that data are sequences of processor-commands. Communication-lines like busses trans-
fer the data between components of the computer-system. Why, next to Random Access Memory (RAM),
are needed other storage-devices such as hard-drives (magnetic disks) or CD-ROMs? RAM works fast,
is expensive and looses the data (and programs) in the moment the computer-system’s power is turned
off. Compared to RAM, hard-drives are inexpensive and hold the data permanently (persistently) until
deleted by the user. For storage-purposes their slowness doesn’t matter. CD-ROMs are what the name
indicates, Read Only Memories on compact-disks of about 600MB. They are easy to transport and their
data cannot be changed, which can be seen as a security advantage. The same applies to DVD-RAMs and
DVD-ROMs, but they can store about 5000MB, about ten times the data-volume of a CD-ROM.

How to start a computer? The model described above lacks any related description. In the technical
context, this process requires additional features to be included into the model. An end-user may answer
that question saying: “By pressing the power button.” This turns out to be a workable and rather sensible
answer on the level of the end-user’s model and working-requirements.

A Computer-Model for Hardware Technicians

A Computer-Model for Hardware Technicians — Even hardware technicians use computer-models. Their
models are much more refined towards the technical aspect of computing.

30 www.chartingJava.com ISBN 3-00-009429-6

A COMPUTER-MODEL FOR HARDWARE TECHNICIANS 31

The graphic below is meant only for getting a feeling for the technicalities involved. The large rectangles

represent individual silicon-chips. Each line represents a single electrical connection. The symbol that

looks like a little sandwiched rectangle, in the lower left part of the graphic, near the number 22, rep-

resents the oscillating crystal, which gives the frequency (also called clock-rate) according to which the

computer works. The number of times an event reoccurs per time-interval is called frequency. The crystal frequency
inside the computers wobbles millions of times per second. This frequency of oscillation (millions of times

per second) of such a crystal is called one Mega-Hertz. An average car-engine turns about hundreds of Mega-Heriz
times per second (thousands of rotations per minute), which is slower about a factor ten-thousand than

the frequency of a computer’s oscillating crystal.

Ic1 :
9 PO.
RESET .
1 80C32
> PL0O :
+1PLL P20 56 am0 24 5
P2.1
7 P1.2 21 All 23 11
P2.2
5 P1.3 22 A12 22 12
P2.3
5 P14 23 Al13 21 13
P2.4
7 P1.5 24 Al4 20 14
P2.5
A P1.6 25 Al15 19 15
P2.6
P1.7 26 Al6 18 16
P27 (15 L
EANVP
17
Lox ox L

[l

ISBN 3-00-009429-6 www.chartingJava.com 31

32

ELEMENTARY COMPUTER-MODELS

32

www.chartingJava.com

ISBN 3-00-009429-6

Structuring Code and Data: Object-Orientation

Structuring Code and Data: Object-Orientation — Methods and, if those methods properly encapsulate
their functionality, the associated Application Programming Interfaces (APIs) are useful for structuring
source-code. If properly designed, even large pieces of source-code, which have been structured with
the means of proceduralization, do work and can be maintained. Nevertheless there are many (real-
life) programming problems that are open to another way of structuring: Object-Oriented Structuring of
source-code.

Historically the object/class-model emerged from trying to simulate physical real-life objects and their
interactions?®. There, classes characterize sets of objects with common properties; this approach can be
seen as the more general one.

Another approach starts by developing programmer-defined types: A number may be thought as being
characterized by its data AND the methods for its manipulation, like addition and subtraction, multipli-
cation and division.

Since real-life objects often can be seen as displaying a considerable complexity, their relevant properties
have to be isolated. That process of model-building is also called abstraction. Object-Orientation has
a considerable conceptual overhead, but a readily approachable aspect can be shown with the stamp-
analogy: Classes within object-oriented structuring are like stamps (which the programmer can carve or
take from a library). With these classes the programmer can instantiate objects, much like the stamps can
be used to produce several prints, into which it is possible to write data by hand. There even may be little
stamp collections, which appropriately combined (“extended”) produce an new type of printed matter.

stamp-/class library (prewritten or self-programmed)

IIUEIRIPIAIA

stamping/instantiating objects

Concept: Object/Class-Model

Concept: Object/Class-Model — This section just introduces the central notion of the Object/Class-Model:
An object is defined as an entity having a state, a behavior and an identity*®.

behavior

@ \ identity-tag

45Nygaard, Kristen and O. J. Dahl. The Development of the Simula Languages in History of Programming Languages. Academic
Press. New York, NY. 1981.

46In object-oriented programming-languages the “state” of an object usually is given by variables and the “behavior” is given by
methods. Though the identity often may be thought as being given by a variable-name, this may not be true when variable-
names are pointers, that may change their pointing-direction! This is the case in Java; there, an identity-tag has to be retrieved
by a special hashCode() -method, as introduced on page 161. CAUTION: Variable-names in Java do not fix the identity of an
object!

131

132 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

In the graphical representation the identity-tag often is omitted, because of self-evidence. But the identity
gives the means to discern two objects with the same state and behavior. Two objects with the same state
and behavior are called equal (but they are not the same due to their different identities).

Later, the object-model is supplemented by an equally generally defined class-model, see page 140.

Example: Object, Class and Class-Hierarchy

As an example of such a general object-notion may be taken a new car coming from a production line:
Although the cars look alike, the car under consideration is a unique one, it has an identity. It has
also a state describable by the gauges for gasoline, motor oil, braking fluid, gear box fluid, cooling water,
battery voltage, engine on/off, lights on/off, blinker right on/off, blinker left on/off, warning blinker on/off
and other dashboard indicator positions. The behavior of that car, starting the engine, driving forward,
driving backward, changing the direction of driving is described by more or less complex sequences of
actions as found in the handbook of the car (or to be learned by driving it). The graphic below presents
two objects which can be seen as simplified representations (so-called abstractions) of a real car:

eGear()

stop()

ignition: on/off
gear: P/R/N/D

ignition: on/off
gear: R/1/2/3

car with automatic transmission car with mechanical gearbox

One car may have an automatic transmission. Another car may have a mechanical gearbox, this changes
the possible state of the car (possible gear-positions are 1/2/3 instead of P/N/D) and this even extends
the behavior of the car by an explicit complex changeGear()-procedure. So far, the structure of the above
objects can be overseen easily. This view may change in cases where ten or hundred cars have to be
considered, abstracted in the way above. If more cars are to be collected, then the different structure of
the objects would become clearer by isolating common states and behaviors to get the pure structure of
the collection of objects:

Car- Class Structure

ignition: on/off

g s

~

QUL

brake() | gear: P/R/N/D

AT i s

\

AT

(brake() | gear: R/1/2/3 changeG}ar()

QUITTY

(The various features, like rounded frames and grayed backgrounds, of the graphic above will be described
successively in the following paragraphs.) Of course, the pure structure above does not relate directly
to any individual object, but any given individual object can be classified fast and easily by using the
structure above. The structure just collects all the different features used to describe the two kinds
of cars above. The iglu-shaped part of that analysis describes a sort of basic car structure giving no
information about what gearbox-system such a car contains. The extension of that structure produces
two new structures: One of those extensions describes a car with an automatic transmission, and the

132 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 133

other describes a car with a mechanical gearbox. The rounded frame with the iglu-like figure inside
represents a structure, called a class. That class can be extended by adding one of the little frames: class

class-extension

S R

brake() | gear: P/R/N/D :

S R

(_brake() | gear: R/1/2/3 changeGegar() :

i,
JUID
iy,

JUID

The resulting new classes above can be used as templates for producing objects (Car-objects*’ with au-

tomatic transmission and Car-objects with a mechanical gearbox). The frame around the iglu-shape, or

around the burger-like shape indicates that it is a class or part of a class-structure. Producing objects

from a class is also called instantiating the class or generating an instance of the class or deriving instantiating a
the object from the class. This instantiating process in a way resembles the stamping-act: The class is Cl0ss

used as a stamp for printing out one or more objects.

The structural analysis of the Car-objects produced a class-hierarchy given by the abstract Car-class, class-hierarchy
without any gear-specification, and the two extended classes, above: A class for cars with a mechanical
gear-box and a class for cars with an automatic gearbox.

Buying a car can be seen as instantiating the car in your living area. Selling removes it. Buying, selling or
scrapping the same car more than once in the time of your ownership would be unusual. So buying, selling,
scrapping can be seen as actions that are part of the behavior of the Car-class rather than reformulating
them for individual Car-objects (The sales-man or the car-crunching machine are not integral parts of
the car’s state or behavior!). These behaviors can be assigned to the Car-class and then are called class-
behavior. class-behavior

The number of Car-objects, which are described with this class-model, neither characterizes the individual
Car-object; but that number describes the set of Car-objects which is considered. So, the “number of Car-

objects” can be seen as a class-state, to be associated with the Car-class. In the frame that fixes the class-state
class-structure, the class-states and class-behavior are collected as squares or square-like boxes in the

upper corners.

The graphics above allow another interesting observation: The base-class, that can be extended, cannot

be sensibly instantiated; the Car-object would have an undefined gearbox and therefore couldn’t describe

an average real-world car. — Such classes which cannot be sensibly instantiated are also called abstract

classes. But, as can be seen above, abstract classes can be used for devising clearer structures and abstract class
abstract classes can have a defined behavior and a definable state which they transfer onto the extended

classes (the ignition on/off state and the other behaviors) and instantiated objects thereof. Abstract classes

here are written with a gray-underlaid frame, to make them discernable from non-abstract, instantiable

classes. (The Java-implementation of the notion “abstract class” is given on page 183 and an elementary

example in Java can be found on page 181.)

Car-Class Hierarch
y grey background: abstract class

grey behavior: abstract method

methods and

. variables
As could be seen above, the very general notion of “behavior” usually is realized as a set of actions or

procedures also called methods. Whereas the notion of a “state” usually is realized as a set of variables.

There can be discerned so-called instance-variables (ignition with the values on/off, gear position with instance-
the values P/R/N/D) used for describing the state of an object and so-called class-variables (number of ‘(I:‘I]c:is(:—bvlgrsio%r;gs
Car-instances) describing the state of the class.

4TThe upper-case letter “C” indicates that “Car-object” denotes a mental image — the model — of a car, not the real thing!

ISBN 3-00-009429-6 www.chartingJava.com 133

instance-
methods and
class-methods

abstract
method

abstract class

134 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

The same classification can be applied to the behavior of classes and objects: There are instance-methods
(start(), accelerate(), ...) that describe the behavior of the individual object. These instance-methods can
be invoked for each object individually (carl.accelerate(slow) and car2.accelerate(fast)). — But there are
also class-methods which describe behavior of the entire class: Like Car.buy(carl) and Car.buy(car2).
The act of buying is taken as a class-method, because the buying-process can be described independently
from the individual car, whereas for example the price of the car describes an aspect of the car’s individual
state. Later, in the context of programming-languages, the equivalent to producing and buying a car can
be seen as the instantiation of an object by using a class-specific constructor-method.

These remarks make it possible to identify the various abstracted notions in the graphical representation
of the class-model:

AV

class methods |:)
class behavior

Ry,

class variable
class state

>

e

behavior

class name state

CCLLEE T L LT TR R TV TR TTEEER I Y

Wy,

o

S
L T T LTI LT T TRETT T A

Finally, consider a reason why even unimplemented methods, so-called abstract methods may be a sen-
sible idea: The brake()-method is a method of the abstract Car-class. But the braking-process differs
in a car with a mechanical gearbox from that in a car with an automatic gearbox (The clutch should be
released during a heavy braking-process.). So, specifying the braking process for the entire Car-class be-
comes difficult because the brake()-method has to be implemented differently for the two derived classes.
But still it may be useful to have at least the idea of a brake()-method within the Car-class, because
braking is what every car should be able to do. This necessity can be indicated with a non-implemented
(abstract) brake()-method in the Car-class. (The Car-class itself couldn’t be instantiated, because there
exists no conventional car without a transmission of any kind, and therefore the entire Car-class has to
be called abstract.) Of course, a class with at least one abstract (unimplemented) method automatically
has to be declared abstract, because objects with unimplemented methods violate the idea of a defined
behavior.

What has done with the brake()-method could have been done also with the accelerate()-method, assum-
ing that acceleration is thought of involving a changing of gears. Why the difference? There exists no
particular reason for that difference: Class/object-structures are models chosen by an onlooker for de-
scribing an area of interest or a problem according to the onlooker’s necessities. THERE IS NO INHERENT
ULTIMATE TRUE STRUCTURE TO BE FOUND, the choice above was taken just to illustrate the class/object-
model. Of course this freedom, or seemingly arbitrary approach, can be used to properly design classes
to depict real-world-problems; with the intention of letting this class/object-model be re-used as much as
possible. — Making class-design, problem-oriented as well as anticipating future needs, can turn out to
be more difficult than expected!

The relation between a collection of objects, class-methods or class-variables and a given class-structure
is restated in the following graphic:

Class Structure

134 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 135

Observe that all objects share the class-variables and the class-methods. Objects Number 1 and Number 4
are equal but not the same! (Their state and behavior are the same but they have been given different
identities.)

Objects . Class-Hierarchy 3 Class-Structure
. super-class -
Q] N =\\\|||||||||ll""',’_ . =\\\\IIIIIIIIIIIIIII/,’=

,\\llllljllllllllll,

sub-class . class-extension

“ (0

extension-
hierarchy

A given class-structure, like that of the Car-class, makes it easy to construct sub-classes by adding class-
extensions. In the (resulting) class-hierarchy, also called extension-hierarchy, those classes that have

been extended often are called super-classes, their extensions consequently are also called sub-classes. super-classes
Observe also that THE MOST COMPACT DESCRIPTION OF THE CLASSES CONSIDERED GIVES THE ORGANI- and
ZATION OF THE CLASS-STRUCTURE. Therefore in programming and documentation, classes are econom- sub-classes
ically declared or described by using the more fragmented but least redundant representation given by Cm'?)iiifgﬁ;“;‘;

the class-structure (and avoiding the organization as a class-hierarchy or worse as a collection of objects). d?gclﬁpﬁo%fhus
widely usead!

The notions “object” and “class” thus can be seen from two sides:

(Class as Template for Creating Objects) A class can be seen as a collection variables and methods
that can be of the instance- or class-kind. A class-hierarchy is given by a structured collection of these
variables and methods. The class then serves as a template for objects; and the hierarchy of classes
represents a tree-structure of successively refined templates. Class-methods and class-variables can be
used independently from the existence of an object.

(Object Collection is abstracted to Class) Consider several similar objects together with methods that
describe how to construct and how to destruct an object: The methods that exist independently from the
existence of any object are called class-methods. There may be a variable that has the same value for
all objects under consideration, that variable is likely to become a class-variable. Another variable that
occurs in some of the objects and contributes to the object’s individuality by having different values from
object to object needs to be an object’s state- or instance-variable. Depending on the variety of the given
objects, there are compilable different collections of variables and methods. These collections constitute
the classes that can be arranged into a class-hierarchy.

So both approaches, the one starting with the class-notion, or the one starting from the object-notion are
part of - or result in the same object/class-model.

OUTLOOK: The class-structure is what will be used to define class-hierarchies in Java on page 163. An
example of a larger class-hierarchy is given by the graphic on page 564 in the context of arranging a
Graphical User Interface; details of the emerging class-structure of the three base-classes (Component,
Container , JComponent) are given successively in the lists on pages 553, 556 and on page 559.

Overriding Methods and Shadowing Variables

Overriding Methods and Shadowing Variables — Consider the brake()-method in the graphics around
page 132; there the abstract method has been redefined differently in both sub-classes. What about re-
defining non-abstract methods of super-classes? Or formulated conversely, what if a method or a variable
in a class-extension has the name of a method or variable in the super-class? First, objects derived from
(one of) the super-classes use the original method, BUT all objects derived from the class-extension or its
sub-classes use the newly defined (instance-)method or (instance-)variable. The overriding of a method
has been visualized in the graphic below:

ISBN 3-00-009429-6 www.chartingJava.com 135

again abstract
methods

136 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

Objects Class Structure

name()
A

deactivated - "overridden"

nae(fo — |)

MOCTRIDN

O
name(Jo|=—|)
(8] m)

Remember the shadowing of variables by local variables of Java methods as introduced on page 123, shad-
owing of variables by class-extension can be imagined likewise. Overriding class-methods and shadowing
class-variables would produce class-specific variants. For an example consider the Java source-code on
page 167 and the corresponding footnote following that source-code.

Class-Extension — Inheritance with multiple Super-Classes

Class-Extension — Inheritance with multiple Super-Classes — Another approach to the process of ex-
tending classes may be thought of by imagining a class having several super-classes. Example: Below the
Car-class extends the class PeopleTransporter and the class FreightTransporter. Each instance of a Car
may be used to transport people as well as freight:

Class—Structure with Multiple Extension

PeopleTransporter FreightTransporter
\\lIIIIIIIIIIIIIl[,’ OpenDOOI'() S\\IIIIIIIIIIIIIII,e

% W

U

I,

openDoor(

i
“nn

o

Car

T,

2,

Whlch dOOFO ’IIIIIIIIIIIIIIIII\ V
class—extension

Example I: The Car-class may extend the class PeopleTransporter, but at the same time the Car-class
may extend the class FreightTransporter. This makes it possible to construct an ambiguity: Both classes
may use a method openDoor(), but as can be seen with the example of a standard car, such a method
usually means different doors (doors to the area with seats or door of the car’s trunk). Though, here, the
ambiguity may seem constructed, a general method for structuring contexts should be designed to spare
the programmer or the user unnecessary complexities. (Sketch the class-structure for this example, the
graphic above may serve as an orientation.)

From above emerges a BASIC PROBLEM: MULTIPLE INHERITANCE BECOMES AMBIGUOUS IF TWO BASE-
CLASSES HAVE METHODS OR VARIABLES OF THE SAME NAME. The question may arise about which
member takes precedence when they both have the same name. Therefore, using classes that extend
multiple super-classes should be considered rather careful.

A tricky workaround concerning this predicament can be formulated as follows: Consider a class hav-
ing only named, but unimplemented methods, also called abstract methods. This makes such a class
automatically abstract, because it obviously cannot be sensibly instantiated. This kind of class, with no

136 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 137

apparent functionality, furnishes a kind of template and this seems to be the best one can get, to for-
mulate multiple inheritance without an inherent source of contradictions or unnecessary considerations
about precedence.

Example I (continued): So, using the example above, PeopleTransporter’s openDoor() and FreightTrans-
porter’s openDoor() may be unimplemented. When both are extended to the Car-class, the openDoor()-
method has to be implemented considering the two types of doors for loading people and for loading
freight.

Class—Structure with Interfaces (fully abstract, multiply implementable)

PeopleTransporter FreightTransporter
openDoor(

implement openDoor(

openDoor(

\j
implementation of INTERFACES

“Classes” which contain only unimplemented, so-called abstract, methods AND allow other inheriting

“classes” of the same kind at their side are called “interfaces” in Java. The name “interface” signals the Java's
option to realize a kind of multiple inheritance as described above. Java*® classes can implement multiple "interfaces”
“interfaces” and thus furnish a version of multiple inheritance that proves relatively free of inherent
complexities. For more see page 185.

Communication-Mechanisms

Communication-Mechanisms — The structuralizing of objects by classes and class-hierarchies may be
considered as useful, but coexisting objects should be able to communicate to simulate real-life interaction
or just to make the object-model more efficient:

Method-Activation or method-calling represents the natural means of communication between objects.

This requires the objects to know each other well, but this knowledge of each other may also involve
an unwanted specialization of the objects.

Communication by method—-call or by dispatching an Event—Object

method—call

SOURCE/F\ DRAIN
£ or

instagtiation /Senéi‘-/kydf‘/mf!

"sending" an (event-) object

Message-Objects exchanged between communicating objects generally requires the objects to know very
little about each other: The only knowledge, that remains necessary, is to know how to interpret the
message-objects, how to send them and how to listen for them. The communication is thus realized
by exchanging messages between objects, this “uncouples” objects. Then, the methods that have to

48The programming-language C++ allows multiple inheritance which has to cope with making inherited behavior non-ambiguous.

ISBN 3-00-009429-6 www.chartingJava.com 137

138 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

be called, are only listening- and dispatching methods, which, by following conventions, generally
simplifies matters! For an object in a message-exchange context, a carefully-designed set of message-
objects furnishes a relatively lean interface to its outside world. The rest of the implementation of
the object could be changed, if necessary, without changing the behavior of the object. This isolation
of the inner workings of an object exemplifies the concept called encapsulation. Like in procedu-
ralization, encapsulation of object-functionalities means hiding the details of the implementation.

For more Java-related information on general messaging see pages after page 271. If the interaction
between objects is realized by exchanging message-objects rather than by issuing object-specific method-
calls, then this is one first step towards what is often called component-model. There, objects usually
send and filter highly normed event-objects. For more information on the area of software-components,
see page 311.

Object/Class-Model Keywords

Object/Class-Model Keywords — The following paragraph gives a small glossary on the main notions of
the object/class-model:

abstract- or virtual class A CLASS THAT CANNOT BE INSTANTIATED, this means that no instances of that
class can be created. Abstract- or virtual classes are collections of common states and behaviors; but
these become only part of an object that is an instance of some sub-class of the abstract- or virtual
class. Some of the methods may be implemented and others may be declared abstract. Example:
A Car-class which lacks the specification of the transmission type is an abstract class, the brake()-
method may be abstract but the accelerate()-method may already be implemented.

abstract method A named method with no functionality defined. A class which contains at least one
such unimplemented method automatically cannot be instantiated; that means a class with a single
abstract method becomes implicitly abstract itself! A standard use of abstract methods can be found
in multiple inheritance, where these method-declarations (in Java “interfaces”) are used as tem-
plates. But as could be seen with the example of the Car-class, when considering the brake()-method
non-abstract, classes can be considered to be abstract without having abstract methods. A car has
to have either an automatic transmission or a mechanical gearbox! (Unless it is an electrical car;
this option has been ignored as the Car-model was introduced.)

class A collection of possible states and behaviors, either gathered from a set of similar objects or es-
tablished from a given problem or area of interest (class as collection of states and behavior),
(class as an abstraction of a collection of objects). In programming, a class can ALSO be taken
as a programmable type-concept (class as a customizable type). A class can be seen as a tem-
plate that furnishes the fields (state) and methods (behavior) of an object (class as a template). A
class gives the behavior and the possible states; an object of that class has the same behavior but
only one fixed state and an identity. Due to the given identity (a registration-number or some other
tagging-instrument) of an object, there can be several objects with the same state, instantiated from
the same class.

class-extension Defining a new (sub-)class by adding other kinds of states and behaviors, respectively
kinds of variables and methods to an existent class.

class-hierarchy A collection of classes, arranged according to their dependencies in form of sub- and
super-classes. These kind of dependencies usually form a tree-like structure.

class-methods Methods which are associated with the class, not with an individual object. For example,
methods (also called constructors) for creating instances of that class. In Java, beside constructors,
so-called static methods are the class-methods.

class-variables Variables that are associated with the class, not with an individual object. For example
the number of objects that have been instantiated during the use of the class can be counted by
using a class-variable. In Java, class-variables are also called static variables.

container-object An object which contains a list of references pointing to other objects. Container-objects
typically implement buffers, stacks or little non-persistent databases. dJava supplies container-
objects like instances of the class java.util.Vector . CAUTION: Though Java array-types can
index objects, array-types are something different than class-types (See the syntax-diagram on
page 143, and the introduction on page 234.). Only from Java class-types can be instantiated objects!

138 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 139

encapsulation Hiding, often complex, self-contained solutions of problems and giving them a much eas-
ier programmer- or user-interface. This allows a relative ease of use without having to grasp in-
ner complexities. Proceduralization offers a means of encapsulation by needing only to know the
method’s signature and return-value to use it. Object-Orientation can be made to work similarly
on the level of the entire object. Encapsulated code may document its functionality in a so-called
(Application) Programming Interface (API). Especially in the context of networking, the effects of
simplifying things, by encapsulation of code, are circumscribed by the notion “transparency”.

inheritance All sub-classes (or class-extensions) receive the methods and the variables furnished by
their super-classes (sometimes also called parent-classes). INHERITANCE DESCRIBES THE SAME
AS CLASS-EXTENSION; but inheritance focuses on the sub-classes whereas extension stresses its
starting-point being the super- or parent-classes.

instance of a class An object derived or instantiated from that class. The class represents a template for
state and behavior; an object bears a concrete state, a concrete behavior and and identity(-tag). Also
refer to the item “object” below.

instance-method A method associated with an individual object (in contrast to a class-method which is
associated with the entire class). The nature of that association, for example, makes the method
change one of the object’s variables. Instance-methods are taken to represent the behavior of their
object.

instance-variable Instance-variables are associated with an individual object (in contrast to a class-
variable which is associated with the entire class). Instance-variables describe the state of their
object.

method A method can be called (for example by other objects) to alter the object’s state or to send mes-
sages to other objects. In programming practice, a method (also called function, procedure, subrou-
tine) usually represents a kind of named piece of code associated with an object or class. Usually
methods are the means by which another object can change the object’s variables (alter the object’s
state).

message A signal from a source-object to a target-object, usually requesting a method-invocation of the
target-object. Sometimes, simply calling the method of another object and transferring information
within the method’s arguments is considered as sending a message! But, often messages are ob-
jects themselves, then they bear a standardized structure, which is known to all communicating
instances. Then, the method-calls used for communication of objects become highly standardized.
Usually a message-object contains the name of the sending object, the name of the receiving ob-
ject, the name of the method to invoke and some variables that are used as the invoked method’s
arguments. This concept has been developed further beginning with page 271 and on page 571.

multiple inheritance The case where a class inherits state and behavior of multiple super-classes (In
Java, multiple super-interfaces). To avoid ambiguities of the super-classes with same variable- or
method-names, only abstract methods and unassigned variables should be used. The Java inter-
face -construct furnishes this restriction.

object An entity with a state, a behavior and an identity. In programming, an object is given as an
entity of variables and methods together with an identity. This generality often reduces to an object
being seen as a variable that has been instantiated from a class-definition, where the class is taken
to be a sort of generalized type-definition.

overloaded methods Methods are identified by their object’s name, their own name and their parameter-
list. So even in their own class, different methods can have the same name but a differing parameter-
list to remain valid. Such methods are called overloaded. Remember the section beginning with
page 124.

overridden methods Overridden methods always occur in the context of a class-extension: A class-
extension may define a method with the same name and the same list of parameters as a method
given by the super-class. The newly defined method becomes the default method of any objects
instantiated from this extension or any further extensions. An analogon on the level of variables
presents itself: Two variables with the same name but different overlapping scopes produce the
following effect: The variable with the limited scope overshadows the other. (Why are there no
overridden variables? Because overriding variables would amount to redefining the type of the
variable-name, nothing more.)

ISBN 3-00-009429-6 www.chartingJava.com 139

140 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

Pragmatics: Constructing class-hierarchies, to describe a problem efficiently, usually turns out to be de-
manding and even may need redesign efforts. But there are some simple rules and conventions that may
ease the task: When describing the real-life problem, using the everyday language,

nouns indicate an object or a class to be used in the object-oriented analysis,
verbs indicates a method’s functionality and the formulation

is @ name indicates something to be an object or a sub-class.

Object-oriented analysis of problems can happen without using a programming-language. Object analysis
represents a problem-oriented method of program-design and therefore usually happens before construct-
ing source-code. But object-oriented design usually addresses itself to EXTENSIVE real-life problems
with less dominant algorithmic complexities. The wealth of approaches and methodologies of object-
oriented-analysis and -design is described in books or related Internet-sites.

Concept: Object/Class-Model within Programming-Languages

Concept: Object/Class-Model within Programming-Languages — In many programming-languages, ag-
gregates of variables are called record s or struct s. Aggregates of command-sequences and variables
are described by functions, methods or subroutines. Here aggregates of variables AND methods are called
classes.

class nane

{

vari abl es;
nmet hods; /Il usually for manipulation of the variables

}

In that context, remember the object-model on page 131 and the graphic of the general class-model on
page 134. The general class-model, introducing state and behavior, changes in the context of a program-
ming language to a class-model given by an aggregate of methods and variables:

AV Ry,

static methods |:)

>

S

.~ 7 static variables

methods

variables

ATy,

o

class name

S
G T LR L LT TR RO T TR TT O T s

Classes in programming-languages can be given another variant of definition: Classes just furnish a
way for the user to aggregate data (variables) and methods (functions, subroutines). Object-oriented
programming-languages also furnish ways to introduce static class-members and ways to derive individ-
ual objects from a given class.

For practical programming purposes the notion of a class can be used

e to introduce programmer-defined types,
e to use a class as a self-contained program and

e to use a class-structure as an index for reference when re-using software:

Classes as Custom-Programmed Types Classes can be used to define programmer-specified types
within the programming-language. These programmer-defined types give templates for the data and
furnish the methods to manipulate the data. The central idea aims at presenting the data and meth-
ods for the data-manipulation as an entity. Thus, in other contexts, methods for data-manipulation
do not have to be re-written. To the programmer, both, the data and the methods, are related in-
trinsically; just like any integer type furnishes mathematical functions like addition, subtraction,
multiplication and division for its manipulation:

140 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL WITHIN PROGRAMMING-LANGUAGES 141

class Integer /I this is a concept-class and does not work in Java

{

int i
addTo(int j){return i+j:}; multiplyWith(int j){return i*;}; Il etc...
}

If the standard types of the given programming-language can be supplemented by types defined by
classes, then variables of class-type even can be declared inside classes:

class C assNanmel _
{ ClassNane2 identifierCOfQbject; /I declaration of variable of class-type

}

Thus a variable of class-type — an object itself — can be seen as part of the state of an object:

@\:' or, in pointer notation @\:'
A \
AN
LR

So the state of an object is given by objects (pre-programmed or programmed by the application-program-
mer) or by variables of primitive-type. Objects of standard classes given by the programming-
language (Java: String) or variables of primitive-types (Java: int) finish the recursion indicated
by the diagram above (objects in objects in objects ...). For example, in the concept-class above,
named Integer, the int -variable of primitive-type, given by the programming-language, defines the
state. A practical example of this idea is given on page 142, where a newly-defined type (VarInteger)
is used for declaring and instantiating a variable (there the variable can be seen as an equivalent to
an object).

Instead of containing only a variable-declaration, a class even may contain a class-definition, a so-called
inner class, giving a kind of local type:

class O assNanel
{ class O assNane2 // class-definition

{
}

Cl assNanme2 nane; // declaration of a variable of that local type (inner class)

}

“II"'

‘\|IIIIIIIIIIIIIII|',"

‘\III"
MITITY

N

1\

\LLLRRRRLLRNRRRRNRRRRRRRRNNTINIREEY /)
o RN RRR RN RN RRRREAY

*,
'llIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“‘

Inner classes are described further beginning with page 157.

Class as a Program A class can be a flexible type, or if a class is furnished with a main() -method,
then a class can be a program:

class Program // this is a concept program and does not work in Java

{
}

main (){ statenents }

ISBN 3-00-009429-6 www.chartingJava.com 141

A class with a
main() -method
remains
instantiable!

142 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

If the source-code inside the main() -method references other classes or creates and references other
objects, then the class with the main() -method does represent the central piece of a program!
Conventionally, classes with a main() -method enable an end-user to issue some command on the
level of the operating-system, eventually triggering a call of the main() -method (the java -command
entered into a terminal-window of the native operating-system triggers a call of the main() -method).
This peculiarity gives classes with a main() -method all the characteristics of a regular program.
Thus, in most object-oriented programming-languages, the class-notion becomes more than simply
a flexible way to define new types.

Class-Structure as Index to Software-Library But the perspective of the class/object-model gives another
important functionality to object-oriented programming-languages: As can be seen in the graphic
on page 135, class-extension lets the code be positioned in a sort of programmer created hierar-
chical index-structure for easier identification. Successive class-extensions and the ensuing class-
hierarchy can be used to realize a structure of the involved objects. Since the super-classes
may be used multiply (remember the car example above), that kind of structuring also makes it
possible to easier re-use code.

Java: Classes as Programmer-Definable Types and Programs

Java: Classes as Programmer-Definable Types and Programs — Java classes can be more than templates
for objects. A Java class with a main() -method constitutes the center of a program. The fully-functional
example below defines two Java-classes: The first class introduces a programmer-defined type and the
second class acts as a program due to its main() -method. (The use of the modifiers public , static
and void is described elsewhere: public on page 175, static on page 147 and void beginning with
page 117)

/I a Java class: a programmer-defined type or a program
class Varlnteger /I programmer-defined type
{ int i /I state: instance-variable
Varlnteger(int x { i =x } /I class-method: constructor
public void set(int x }{ i =x } /I behavior: instance-methods
public int get(){ return i; }
public void increment(){ i = ++i; }
public void print(){ System.out.println(i) %
public class Program /I program or application
{ public static void main(String unused[]) /I class-method: static main()
{ Varinteger theObject = new VarInteger(0)
String theOtherObject;
theOtherObject = new String("Hello");
theObject.print();
System.out.printin(theOtherObject);
)
[localhost:~/JavaCodeFiles/Basics1/SCObjectOrientati onl] andreadipietro% javac Program.java
[localhost:~/JavaCodeFiles/Basics1/SCObjectOrientati onl] andreadipietro% java Program
0
Hello
[localhost:~/JavaCodeFiles/Basics1/SCObjectOrientati onl] andreadipietro%

*

Another example of a programmer-defined type is shown in the source-code on page 76, where the Pair-
class has been introduced. These two approaches for using Java classes (program and custom-defined
type) are the most typical and elementary ones. — A class may also be used to just furnish a collection of
methods; as does the java.lang.Math -class which just offers a range of mathematical functions to the
Java programmer (for more see pages 94 and 257).

An instantiation of a class with a main() -method has no special meaning with respect to the main() -
method and its program-character: The main() -method just remains one of the static methods, except
that it can be activated by an external event (the issuing of the “java "-command). A first example of such
a case is given on page 159.

Java: Reference-Types and their Instantiation with the new-Keyword

Java: Reference-Types and their Instantiation with the new-Keyword — Remember the introduction of
primitive-types on page 83. Variables of primitive-type have their identifier fixed to an address in the com-
puter’s Random Access Memory (RAM). These types, with identifiers being an unchangeable reference,

142 www.chartingJava.com ISBN 3-00-009429-6

JAVA: REFERENCE-TYPES AND THEIR INSTANTIATION WITH THE NEWKEYWORD 143

thus being glued to the RAM-address and exhibiting a fixed behavior (addition, division with number

types), are called atomic- or primitive-types. Primitive-types constitute an integral part of the Java lan-

guage and prescribe the data-format (int : 4bytes) and the possible manipulations (Addition, Subtraction,
Multiplication, Division). With variables of primitive-type assignment happens by-value, this means that remember:
an assignment copies the value to the variable-name’s part of the RAM. Usually a computer processes assignment
variables of primitive-types faster than Java objects of class-type. by-value

Java offers two kinds of basic non-primitive-types, the so-called reference-types :

class-type Currently discussed. A variable of that type is instantiated by prefixing a constructor-call
with a new-keyword; for more see page 145.

array-type Realizes a simple form of aggregation of values or object-references. Variables of class-type
as well as variables of primitive-type always can be aggregated as an array. Variables of array-type
are recognizable by the brackets [] used in declaration and referencing, for more see page 234.

An example of introducing a class-type has been given in the preceding program on page 142. There has
been defined a class(-type) “VarInteger” and from this class has been instantiated an object (referenced
by an identifier “theObject”).

The interface-type gives a variant of the class-type for cases of multiple-inheritance, for more see page 185.

| ReferenceType |

InterfaceType |—

ReferenceType = ClassOrInterfaceType | ArrayType

ClassOrInterfaceType := ClassType | InterfaceType

ClassType := TypeName

InterfaceType .= TypeName — ClassType 146, InterfaceType 187, ArrayType 234
(ClassOrlInterfaceType is used in ClassInstanceCreationExpression on page 151)

Like variables of primitive-type, variables of reference-type have identifiers that point to an address in
RAM-space. But, the RAM-space-address of variables of reference-type is changed by assignment (=),
NOT the value stored there, as it is the case with variables of primitive-type. IMPORTANT TO NOTE:
IDENTIFIERS OF VARIABLES OF REFERENCE-TYPE CAN BE SEEN AS ALIASES AND THEIR POINTING-
TARGET CAN BE CHANGED BY ASSIGNMENT:

Variable of reference—-type:

RAM Java compiler Java source—code

/["String" is a reference-type in Java

String name = "Text";

AR

// another name for the SAME object
String name2 = name;

S

A reference is a container for a RAM-address which can be changed by the programmer by assignment.
That’s an important difference to Java variables of primitive-type where the references are fixed to an
address of the RAM-space. And the act of assigning variables of primitive-type to each other with the

equal sign (=) means copying. (see the graphics on page 83) For variables of reference-type assignment assignment
by-reference

= |X|m|A

ISBN 3-00-009429-6 www.chartingJava.com 143

144 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

(==) means: If objects and associated names are given, reassignment of names by using the equal sign (=)
only exchanges references, not the entire object, as indicated within the graphic above.

Copying of an object, a variable of reference-type, is done with a clone() -method as described below:

Copying a variable of reference—type with the clone()—method:

RAM Java compiler Java source—code

/["String" is a reference-type in Java

String name = "Text";

— [X|m|=

/I a copy of the object

name2 String name2 = name.clone();

= | X|m|A

The clone() -method PRODUCES A NEW OBJECT that contains the same data AND RETURNS A REFER-
ENCE TO THAT NEW OBJECT! (It does NOT “return the new object” itselfl)

This statement is true in all generality: Java-methods with return-types of the primitive kind return the
variable-value itself. But if the RETURN-TYPE OF ANY JAVA METHOD IS OF REFERENCE-TYPE, then, like
the clone() -method, the method returns only a reference to the object!

The name of every reference-type could be suffixed with the name “Pointer” (StringPointer instead of
String), to reflect the difference to the named value of data that has a primitive-type. Data of primitive-
type has only one name, assignment with the “="-operator copies that value. Whereas data of reference-
type can have multiple names, meaning that multiple pointers are referencing the same data; here as-
signment with the “==’-operator just makes the pointers equal. The assignment-operator, used with
identifiers of reference-type, does not copy the data!

identifier3
identifier4

identifier2

identifier of clone

Q

identifierOfClone = identifierl.clone():

Any name of reference-type can be assigned the literal nu I I , which lets the name reference nothing.

name SN

name = null;

144 www.chartingJava.com ISBN 3-00-009429-6

JAVA: CLASSES 145

vari abl eNanme = null; /I an identifier of reference-type not yet assigned

NullLiteral = null

Instances of reference-types (to be more precise, instances of non-abstract classes and arrays) are created
by prefixing so-called constructor-methods with the neW-keyword or by calling so-called factory-
methods, described later on page 151. (The clone() -method is a factory-method, because calling this

method creates a new object and this method returns a reference to that object.) constructors and
factory-methods

Cl assNane vari abl eNamre = new O assNane();
/I Class-methods with the class-name are called constructors.

The new-keyword in conjunction with a constructor allocates the memory, creates and initializes the ob-
ject. Then the variable-name (identifier) represents a reference to the object; the variable-name does not
represent the object itself, contrary to names of variables with primitive-type!

Below the processes of declaration, memory allocation and instantiation are compared for variables of
primitive-type and variables of reference-type:

| variables of type- | | Declaration Allocation Instantiation |
-primitive PrimtiveType nane = val ue;
-reference Cl assType nane = new d assType(); + a constructor-call
-reference (array) PrimtiveType[] nane = new PrimtiveType[; (arrays, see page 234)
-reference (array) Cl assType[] nane = new d assTypel];

Java’s String
In Java, the String -class has been allowed an exception to the general class-usage; a Java String -object exception
can be instantiated like a variable of primitive-type:

"

String s ="text ";

Only in this special case of the String -class, Java allows an instantiation like those used with variables
of primitive-type. Actually the String -class also allows every String -object to be instantiated using the
new-keyword prefixing the String -constructor:

String s = new String("text ");

This standard way of instantiating objects of class-type has been used multiply in the previous programs.

Java: Classes

Java: Classes — The following sections use the class-concept together with the idea of a reference-type
to describe the Java-specific realization of programmer-defined classes. This includes, for example, inner
classes, anonymous classes and anonymous objects, supplemented by scoping- or accessibility considera-
tions.

In the previous chapter, the description of proceduralization by using methods had more implications than
could be forseen by the pure concept®’, the same is true with the implementation of the class-concept by
the Java programming-language.

Java: Class-Declaration

Class-declaration may also be called class-definition or class-implementation. The standard Java-form
can be seen below:

class O assNane { classMenbers }

49Starting with considering named blocks of code, ending up with local variables making possible overloading, recursion and call-
back.

ISBN 3-00-009429-6 www.chartingJava.com 145

Index

* in policy-file, 472

- in policy-file, 472

-1, default TCP-port, 388, 627

-1, end of file, 441, 627

-1, end of stream, 296, 627

Java.policy (text-file), 458, 461, 462, 467, 469
100 Percent Java, 72

Absolute Path-Name, 48

absolute path-name (example), 510

absolute positioning and layout-manager, 542

Abstract Class, 184

abstract class (non-instantiable class), 184

abstract class (non-instantiable class, concept),
134, 138

abstract class and static variables, 184

abstract class-type, type-casting identifiers to-,
552

Abstract Method, 184

abstract method (non-implemented method), 184

abstract method (non-implemented method, con-
cept), 134, 136, 138

abstract modifier, 181

Abstract Window Toolkit (AWT), applets, 613

Abstract Window Toolkit (AWT), as API, 52, 67,
274

Abstract Window Toolkit (AWT), as package, 53,
184, 246, 251, 266, 505

Abstract Window Toolkit (AWT), class-hierarchies,
564

Abstract Window Toolkit (AWT), description, 520

Abstract Window Toolkit (AWT), event-handling,
276, 331, 440, 572

Abstract Window Toolkit (AWT), image drawing,
519, 595

Abstract Window Toolkit (AWT), image process-
ing, 520

Abstract Window Toolkit (AWT), image process-
ing (extensive), 527

Abstract Window Toolkit (AWT), peer-classes, 353

Abstract Window Toolkit (AWT), screen-components,
538, 547, 551

Abstract Window Toolkit (AWT), time-delayed data,
606

Abstract Window Toolkit (AWT), versus Swing,
520, 548

AbstractButton (javax.swing), 574

AbstractList (java.util), 237

Access (security-related), 449

access, random-, 233, 291

access-area, 430

access-area and scope in an Hierarchical File Sys-
tem (HFS), 172

Access-Area of an identifier, 172

access-area, extended by overriding, 175, 286

access-control, in security context, 449

access-control, locking data in threads, 213

access-control, with modifiers, 171, 175

access-modifier, 177, 179, 180, 429

access-modifier (protocol character), 345

AccessControlContext (java.security), 470

AccessController (java.security), 427, 453, 458,
462, 463, 465, 470, 476

accessing class-members, 155

accessing methods by overriding, 192, 286

accessor (of a software-component), 312

accessor-method (of a software-component), 312

ActionEvent (java.awt.event), 544, 573, 574, 578,
603

ActionListener (java.awt.event), 578

actionPerformed()-method (java.awt.event.

ActionListener), 127, 544, 576, 591

activated window, 577

activated window, concept of-, 509

active graphics-card (hardware), 198

active modem (hardware), 198

adapter, 272, 289

adapter-class, 187, 190, 580, 584, 601

adapter-class with software-components, 318

additive-operators, 94

address of a computer in a network, 342

address-space and port, 231, 271, 337

address-space of a processor, 28, 291, 522, 535

address-space, in threading, 217

addressing resources network-wide: URL, 373

administrator, 458, 475

administrator (key-management and signing files),
488

administrator (using a security-manager), 465

administrator and jar-archive, 326

administrator and security, 448, 453, 457

administrator and tools, 54

administrator, cannot change a security-manager,
463

administrator, selecting policies, 460

aggregates to streams, 237

algebra, boolean-, 97

algorithm, 20, 41, 140

algorithm, compression-, 534

algorithm, cryptographic-, 478

algorithm, cryptographic- or encryption-, 480

algorithm, ROT-encryption-, 478

algorithm, Run Length Encoding (RLE)-compression-
, 522

algorithm, sorting-, 195, 249

algorithm, strength or quality of a cryptographic-
, 479

algorithm, ZIP-compression-, 326, 522

AlgorithmParameterGenerator (java.security), 485

661

662

Index

AlgorithmParameters (java.security), 485

algorithms, implementation of cryptographic-, 485

algorithms, modes of encryption-, 484

algorithms, names of encryption-, 479

algorithms, names of key-pair-, 481

algorithms, names of- for digital signatures, 483

algorithms, names of- for hashfunctions, 482

AllPermission (java.security), 459, 461

alpha-value/-channel, 526, 527, 556

ambiguity and multiple inheritance, 136

ambiguous identifier, 187

ambiguous variable-name, 187, 239

AND-operator (&&), 98

AND-operators (&, &&), 84

anonymous class, 159

anonymous constructor-call, 159

anonymous object, 159, 279, 581

anonymous package, 241

anonymous screen-window objects, 159

API (Application Programming Interface), 51, 55,
129, 131, 190, 249

API (Application Programming Interface) as Java
software library, 54, 59

APT (Application Programming Interface, defini-
tion), 43

append()-method (java.lang.StringBuffer), 120, 257

applet, 67, 205, 396, 430, 613

Applet (java.applet), 68, 396, 397

Applet (java.applet) heavyweight, 565

applet and application, difference of-, 460, 613

applet and distributed computing, 338, 406, 423

applet communication, 403

applet HTML-tag, 68, 397, 399, 401, 431, 614

applet introspection, 402

applet methods, 529, 615

applet methods, triggerable-, 397, 400, 614, 617

applet runtime-environment, 67, 398, 564, 618

applet runtime-environment as security-sandbox,
463

applet runtime-environment, example of a-, 619

applet runtime-environment, start, 401, 432, 614

applet security, 460, 475

applet source-code, 399, 615

applet threading, applicational-, 401

applet threads, supporting-, 205, 232

applet with a main()-method, 619

applet’s triggerable methods, 618

applet’s uniqueness, 67, 333, 460, 613

applet’s window, 400

applet’s window (security mark), 475

applet, concept of an, 67, 397

Applet, description, 68

applet-container (= applet-sandbox), 398

AppletContext (java.applet), 404, 617

appletviewer, 67, 397, 431, 475

appletviewer as a Java program, 619

appletviewer, controlling security externally with-
, 457,461, 463

Application, 38, 507, 512, 613

application and applet, difference of-, 460, 613

662 www.chartingJava.com

application and main()-method, 38, 65, 127, 141,
142, 154

application icon, 512

Application Layer (OSI), 355

Application Programming Interface (API), 51, 55,
129, 131, 190, 249

Application Programming Interface (API) as Java
software library, 54, 59

Application Programming Interface (API, defini-
tion), 43

application protocol and TCPport-number, 363

Application User Interface, 512

application with Graphical User Interface, 515

application, HelloWorld-, 71

application, inside named packages, 241, 246

application, inter-application-communication, 353

application, MIME-type, 369

application, security control by programmer, 462

application, security control by user, 457

application, starting an-, 65, 431

application, stopping an-, 432

Application, Web-Application, 406

application-development, 313

application-programmer, 27, 448

Application-Programming, 38

application-protocol, 348, 367, 378

application-protocol and servlet, 405

application-protocol and URL, 373

application-protocol and URL-class, 388

application-specific programming interface of Java-
beans, 311

application-triggered-programming, 599

applications with system tasks, 423

applications, multiple in one JRE, 443, 630

applications, security-related-, 488

Archiving-Tool: jar, 325

archiving-tool: jar, 54, 242, 243, 250, 489, 492

ARGB-color-coding applied, 530

ARGB-pixel-format, 526

arguments of a method-call, 116

ArithmeticException (java.lang), 92, 280, 281

array, 234

Array (java.lang.reflect), 250

array, dimension of an -, 234

array-initializer, 235

array-type, 143, 234

array-type and class-loader, 236, 443

array-variable, 234

arraycopy()-method (java.lang.System), 236, 254,
630

ArrayIndexOutOfBoundsException (java.lang), 235,
281, 451

Arrays (java.util), 236, 238, 249

ASCII (American Standard Code for Information
Interchange), 20, 33, 34, 73, 265

ASCII-format and HTTProtocol, 369

ASCII-format and policy-file, 451, 458

ASCII-format and security-files, 457

ASCII-format and security/policy-files, 455

ASCII-format and URL encoding, 375

assignment, 74

ISBN 3-00-009429-6

Index

663

assignment by-reference, 143

assignment by-value, 83, 143

assignment operators, 99

assignment-operator (=), 99

assignment-operator (primitive- and reference-type),
144

associative, left-/right-, 101

asymmetric-key-cryptography, 479

asynchronous method, 231

atomic block of code, 214, 216

Atomic Operation, 214

AUI (Application User Interface), 512

Authentication, 477

authentication, 477, 488

AWT (Abstract Window Toolkit) versus Swing,
520

AWT (Abstract Window Toolkit), applets, 613

AWT (Abstract Window Toolkit), as API, 52, 67,
274

AWT (Abstract Window Toolkit), as package, 53,
184, 246, 251, 266, 505

AWT (Abstract Window Toolkit), class-hierarchies,
564

AWT (Abstract Window Toolkit), description, 520

AWT (Abstract Window Toolkit), event-handling,
276, 331, 440, 572

AWT (Abstract Window Toolkit), image drawing,
519, 595

AWT (Abstract Window Toolkit), image process-
ing, 520

AWT (Abstract Window Toolkit), image process-
ing (extensive), 527

AWT (Abstract Window Toolkit), peer-classes, 353

AWT (Abstract Window Toolkit), screen-components,
538, 547, 551

AWT (Abstract Window Toolkit), time-delayed data,
606

AWT (Abstract Window Toolkit), versus Swing,
548

AWTEvent (java.awt), 331, 555, 573

AWTEvent, class-hierarchy, extensions, 575

AWTEvent, event-dispatch-thread, 586

AWTZEvent-objects, triggering dispatch, 590

AWTEventListener (java.awt.event), 586

Backus-Naur Form (BNF), 76, 655

Base-Class, 55

base-classes, 54, 247, 249, 389

base-classes (loading), 434

base-classes, peeking inside-, 243, 244
BasicPermission (java.security), 467
BasicPermission (java.security) in footnote, 467
Bean, 251, 313

Bean Class, 313

BeanlInfo (java.beans), 318

Beans, 311

behavior and method (in object-orientation), 133
behavior of an object, 131, 161

big-endian order of bytes, 533

binary number-system, 34

binary operators, 93

bit, 33, 78, 79, 87

ISBN 3-00-009429-6

bit-length of words in the Java Virtual Machine,
216

Bit-Mask, 533

bit-mask, 287, 555, 563, 576, 579, 581, 591, 593

bit-redundancy checks, 341

Bitmap of image, 521

bitmap of image, 96, 519, 525, 530, 535

bitmap of image and screen-component, 540

bitmap of image in rendering, 535

bitmap of image, updated loading, 563

bits for monitor screen-image, 537

bits of IP-addresses, 359

bits of IP-addresses (in footnote), 377

bitwise operators, 95, 97

bitwise shift-operators, 95

bitwise-negation-operator (), 97

blank-final, 122, 182, 186, 190

block, 105

block, (machine-)synchronized-, 216

block, atomic-, 214, 216

block, empty-, 184, 187, 190, 581

block-cipher, 484

Blocked thread, 199, 211

Blocking Method, 129

blocking method, 231

BNF (Backus-Naur form), 76, 655

Boolean (java.lang), 169, 250, 256

boolean (primitive-type), 84, 93, 96, 97, 106, 108,
169, 253, 312

boolean algebra, 97

boolean literal, 79

boolean negation-operator (!), 93, 97, 98

BorderLayout (java.awt), 543, 558

bound property (of software-component), 315

branching, 89, 283

branching (if-statement), 105

branching (switch-statement), 106

branching (switch-statement), example, 401

branching (try-catch clause), 112

branching in Java, 105

break (Java-keyword), 106

break-keyword, 110

break-statement, 110

break-statement and try-statement, 282

breaking a cryptographic algorithm, 478

bridge, 29, 353, 354

broadcasting, 277, 343

Browser, 371

browser, 38, 197, 205, 243, 274, 324, 370, 373,
430, 520

browser and applets, 67, 68, 72, 396, 397, 431,
564, 614

browser and servlets, 406

BufferedImage (java.awt.image), 520, 5630

BufferedInputStream (java.io), 304, 441

BufferedOutputStream (java.io), 304

BufferedReader (java.io), 300, 304

BufferedWriter (java.io), 304, 386

builder-tool (for software-components), 311

bus (communication-line), 29, 87, 337

bus (network topology), 340

www.chartingJava.com 663

664

Index

Button (java.awt), 566

by-reference, assignment-, 143

by-reference, passing arguments-, 120, 256

by-value, assignment-, 83, 143

by-value, passing arguments-, 120, 225, 256

byte, 33, 73, 74, 78

Byte (java.lang), 169, 181, 250, 256

byte (primitive-type), 73, 85, 169

byte (primitive-type), behavior in a cast, 87, 100,
101

byte (primitive-type), byte-code as array of-, 441

byte (primitive-type), key-data as array of-, 493

byte (primitive-type), length of an array, 234

byte order, big-endian- or network-, 533

byte, 16 byte IP-address, 358

byte, 8 to 16 bytes as hashcode, 481

byte, four byte int-value, 388

byte, four byte int-value as ARGB-format, 526

byte, four byte IP-address, 357

byte, most significant-, least significant- of a given
byte order, 533

byte, one byte ASCII-format, 33, 265, 374

byte, one byte unit of stream-data, 296

byte, represented by a pair of hexadecimal digits,
36

byte, two byte port-address, 231, 363

byte, two byte Unicode-format, 34

byte, two byte unit of stream-data (=char), 296,
302

Byte-Code, 65

byte-code-verifier, 281, 441, 450, 451

ByteArrayInputStream (java.io), 238

ByteArrayOutputStream (java.io), 238

CA (certification authority), 484

Calendar (java.util), 262

callback, 228, 288, 631

callback of methods, 127

callback-model, 276, 585

Canvas (java.awt), 536, 538, 597

CardLayout (java.awt), 543, 559

case (Java-keyword), 106

case of letters, 34, 66, 81, 82, 491

case of letters (in domain-names), 361

case of letters (in URIs), 375, 394

case of letters, in integer-literal of type long, 78

case-sensitive identifiers, 81

case-sensitive, not-(applet’s parameter-name), 616

cast potential, testing type-, 253

cast, implicit type- (example), 544, 580

cast, narrowing type-, 169

cast, widening type-, 169

casting identifiers to an abstract class-type, 552

casting identifiers to interface-type, 194, 404

casting of variable of primitive-type, 88

casting of variable of reference-type, 169

casting, implicit type-, 86, 87, 100, 106, 169, 194,
253

Casting, Type-, 88

casting, type-, 257, 450

CD-ROM, 298

certificate, 489

664 www.chartingJava.com

Certificate (java.security.cert), 494

Certificate interface (java.security) in footnote, 494

Certificate Revocation List (CRL), 484

Certificate Signing Request (CSR), 484

certificate, a signed public key, 484

certificate, self-signed, 484

CertificateFactory (java.security.cert), 485

certificates in key-store, 488

certification authority (CA), 484

chain-model, 276, 440, 574

ChangeEvent (javax.swing.event), 547, 574, 577

Changel.istener (javax.swing.event), 547, 577

channel, virtual- (in network), 346

channel-switching, 277, 345

char (primitive-type), length of an array, 234

char (primitve-type), 85, 169

char (primitve-type), as TCPport, 385

char (primitve-type), as UDPport, 384

char (primitve-type), character-encoding, 86, 584

char (primitve-type), stream-data, 296, 302, 309

Character (java.lang), 82, 169, 257

character-literal, 73, 79

CharArrayReader (java.io), 238

CharArrayWriter (java.io), 238

charAt()-method (java.lang.String, StringBuffer),
257

check...()-method (java.lang.SecurityManager), 128,
256, 456, 462, 464, 465

check...()-methods, triggerable-, 462

checkbox, 510, 521, 548

Checked Exception, 281

checked exception, 280, 330

checked exceptions and throws-keyword, 281

checkPermission()-method (java.security.

AccessController), 128, 453, 456, 465, 467

checksum, 481

child-component, 542, 543, 551

child-component, layout, 558

chime-like counting (NON-), 458

chime-like counting in random-access-filing, 299

chime-like counting of character-positions in strings,
257

chime-like counting of coordinates, 537

chime-like counting, (0,1,2,...) in footnote, 234

Cipher, 478

Cipher (javax.crypto), 497

cipher, block-, 484

ciphers, names of-, 496

class, 138

Class (java.lang), 151, 250, 252, 255, 256, 435,
437, 629

Class (java.lang) aquired for reflection, 252, 318

Class (java.lang) as class-loader, 443

Class (java.lang) its origin, 441

Class (java.lang) references ProtectionDomain, 468

Class (java.lang) references super-class, 558

Class (java.lang) references the class-loader, 435

class as program/application, 141

class as type, 73, 140

class declaration/-definition, 145

ISBN 3-00-009429-6

Index

665

class final and constructors non-public: no in-
stance, 255, 257, 382, 417

class locked by one of its static synchonized meth-
ods, 214

class without a super-class (java.lang.Object), 164

class, abstract- (non-instantiable class), 184

class, abstract- (non-instantiable class, concept),
134, 138

class, abstract-, and static variables, 184

class, adapter-, 187, 190, 580, 584, 601

class, adapter-, with software-components, 318

class, anonymous-, 159

class, constant-, 183

class, final- (non-extensible), 146, 183

class, final- (non-extensible) example, 257

class, inner-, 157

class, interface- (RMI), 416

class, loading of a-, 152, 433

class, local-, 157

class, member-, 157

class, nested, 157

class, public-, extended over different packages,
438

class, public-, has to be in file of same name, 146,
241, 242, 245, 246

class, runtime-representation of a-, 54, 255, 433,
441, 443, 629

class, signed- = signed class-file, 494

class, skeleton- (RMI), 416

class, static member-, 158, 182

class, stub- (RMI), 416

class, top-level-, 157

class, virtual- (non-instantiable class), 138

class, wrapper-, 169, 171

class-extension, 138

class-hierarchy, 133, 135, 138, 164, 247

class-hierarchy (AWT/Swing), 564

class-hierarchy and casting, 171

class-hierarchy and multiple extension, 186

class-literal, 252, 437

class-loader (secure), 469

class-loader delegation, 440

class-loader’s name-space, 436, 469

class-loader, secure-, 454, 458, 471

Class-Loading, 433

Class-Member, 148, 166

class-member, 147, 148, 154

class-member and static-keyword, 154

class-member, static-, 140, 148, 154

class-members and interfaces, 190

class-members, accessing-, 155, 156, 171

class-method, 138, 154, 182

Class-Name, 146

Class-Structure, 135, 164

class-structure, 134, 135, 164, 653

class-structure (example), 399

class-structure and class-hierarchy, 135, 166, 194

class-structure and interface, 190

class-structure and java.lang.reflect-package, 250

class-structure and programmer, 164

class-structure as index, 142, 194

ISBN 3-00-009429-6

class-structure of JApplet, 615
class-type, 120, 143, 146
class-variable (static variable), 138, 148, 154, 182
class/object-model, 131
class/object-model (in programming language), 140
ClassCastException (java.lang), 171, 253, 281
classes, list of mentioned-, 653
classes.zip, 243, 244, 247, 249, 389, 434, 641
ClassLoader (java.lang), 250, 255, 435, 436
ClassLoader (java.lang) extensive, 440
ClassLoader (java.lang) referenced, 629
ClassLoader (java.lang) simple, 438
ClassNotFoundException (java.lang), 281, 436
CLASSPATH-variable (operating-system), 61, 66,
243, 254, 436, 451, 629
Client, 276
client-side computing, 406
Clonable interface (java.lang), 189
Clone, 191
clone, 192
clone()-method (java.lang.Object), 144, 165, 252
clone()-method, a factory-method, 151
clone()-method, needs Cloneable-interface, 192,
258, 637
clone()-method, unoverridden, copies shallow, 193
clone()-method, usually overridden, 168
Cloneable interface (java.lang), 192, 252, 281
CloneNotSupportedException (java.lang), 192, 281
clones are shallow equal, 162, 191, 193
cloning a variable of primitive-type, 83
cloning a variable of reference-type, 144
Cloning, Deep-, 191
Cloning, Shallow-, 191
close()-method (java.io.FilterInputStream,
java.io.FilterReader), 302
close()-method (java.io.InputStream,
java.io.Reader), 296, 305, 456, 493
close()-method (java.io.OutputStream,
java.io.Writer), 296, 456, 493
close()-method (java.io.RandomAccessFile), 299
close()-method (java.net.Socket), 383, 385
close()-method (javax.servlet.ServletOutputStream),
409
CMY-model, 524
CMYK-model, 525
code, machine-, 37
code, object-, 38
code, P-, 39
code, Pseudo-, 39
code, Source-, 38
code, source-, 37
code, standalone- (=program), 160
codeBase in a policy-text-file, 459—461, 472
codebase of applet’s byte-code, 403, 614
CodeSource (java.security), 454, 455, 465, 501
coding- and content-transformation, 35, 520
coding-transformation, 534, 535
Collection (java.util), 237
Color (java.awt), 550, 556
Color and transparency, 527
color concept, 522

www.chartingJava.com 665

666

Index

color-cube, 523

color-model, 522

color-model, CMY-, 524

color-model, CMYK-, 525

color-model, direct-, 526

color-model, HSV and HSB, 525

color-model, HSV-, ..., 525

color-model, index-, 526

color-model, indirect-, 526

color-model, RGB-, 523

color-space, 523

ColorModel (java.awt.image), 520, 556, 596

Command-Line, 44

command-line, 44, 250, 324, 400, 407, 430, 431,
496

command-line of browser, 68, 373, 614

comment in source-code, 37, 71, 323

communication infrastructure, three-tiered-, 277,
352, 406, 414

communication suggesting concurrency, 231

Comparable interface (java.lang), 189

compareTo()-method (java.lang.Comparable) ab-
stract, 189

comparison operators (==, ! =), 96

Compilation Unit, 246

compileClass()-method (java.lang.Compiler), 255

Compiler, 38, 39

compiler (byte-code to native code), 255

Compiler (java.lang), 250, 255

compiler, cross-, 45

compiler, Java-, 52, 53, 124, 184, 257, 280, 431

compiler, Java-, and -generated names, 83

compiler, Java-, and character-encoding, 71, 79

compiler, Java-, and comparison-operator, 163

compiler, Java-, and compilation unit, 246

compiler, Java-, and nested classes, 159

compiler, Java-, and security, 450

compiler, Java-, and unreachable statements, 106

compiler, Java-, import-on-demand, 244

compiler, Java-, in JDK, 54

compiler, Java-, late-binding, 168, 183

compiler, Java-, letter-case sensitive, 66

compiler, Java-, searching files, 63, 65

compiler, rmic- (RMI), 415

Compiler-tool: javac, 72, 431

compiler-tool: javac, 60, 246, 333, 397, 407, 473

Component (java.awt), 538, 551, 559, 563

Component as drawing surface, 528

Component as source of event-objects, 577, 591

Component method isLightweight(), 550

Component methods, 553

Component’s paint()-method, 595

Component, as source of event-objects, 331, 573

Component, class hierarchy, 552, 565

component, screen-, 331, 399, 509, 519

component, screen- as a painting-surface, 538

component-model, 138, 311, 381, 542

ComponentEvent (java.awt.event), 573, 575, 577,
598

ComponentListener (java.awt.event), 577

compression, 240, 325, 368

666 www.chartingJava.com

Compression, destructive-, 522

Compression, non-destructive-, 522

compression, RLE-, 522

compression, ZIP-, 326, 522

compression-algorithm, 534

Computer, 17

computer-model, 19, 23

computer-platform, 44

computer-system, 29

computing, distributed-, 423

concatenation, string-, 95

conditional compilation, 106

conditional-operator (?), 99

connection, logical-, 343

connection, multipoint-, 343

connection, point-to-point-, 277, 343

connection-oriented network, 345

Connection-Oriented Protocol, 350

connection-oriented protocol, 275, 351

connectionless network, 345

connectionless-protocol, 350

constant (final variable in interfaces), 180, 187

constant (final variable), 83, 85, 86, 106, 122,
182, 256, 450, 497, 563, 577, 581, 584

constant class, 183

constant object, 183

constant, String-, 383

constrained property (of software-component), 315

constructor, 145, 165, 642

Constructor (java.lang.reflect), 250, 253

constructor (object-orientation), 134, 138

constructor of core-class and security behavior,
463

constructor without arguments, 642

constructor, declaration, 149

constructor, default-, 149, 166

constructor, default-accessible-, 181

constructor, not a class-member, 148, 166

constructor, overloaded-, 151, 174

constructor, private-, 150, 181, 182, 382, 417

constructor, private-, and singleton, 160

constructor, protected-, 151, 181

constructor, public-, 180

constructor, super()- (class-extension), 166

constructor, this()-, 167

constructor-call, 145, 151

constructor-call chaining (class-extension), 166

constructor-call sequence, 152

constructor-call, anonymous-, 159

constructor-callback, 631

constructors and factory-methods, 151

constructors non-public and class final: no in-
stance, 255, 257, 382, 417

Container (java.awt), 551, 556, 559

container and multiple layouts, 559, 566

Container as content-pane, 536, 538

Container as content-pane (Swing), 567

Container as drawing surface, 528

Container as layered-pane (Swing), 567

Container as source of event-objects, 578

ISBN 3-00-009429-6

Index

667

container of screen-components, 512, 542, 551,
556, 576, 598

Container’s paint()-method, 595

container, applet- (=applet-sandbox), 398

Container, class hierarchy, 556, 564, 565

container, fifo-, 293

container, servlet- (=servlet-sandbox), 406, 407,
409, 430

container-file (=jar-file), 491

container-object, 138

ContainerEvent (java.awt.event), 576, 578, 598

ContainerListener (java.awt.event), 578

containment-hierarchy (screen-components), 440,
541, 543

content- and coding-transformation, 35, 520

Content-Handler, 369

content-stream, 389, 394

content-type, 368, 405

content-type and encoding, 368

content-type and portability, 265

ContentHandler (java.net), 394

ContentHandlerFactory (java.net), 394

context-free-/generic event-object, 572, 573

context-independent-event, 575

contextual event, 575

continue-keyword, 110, 112

continue-statement, 110

Control Structure, Statement and Expression (con-
cept), 89

Controller and MVC, 515

conventions, 83, 140

Cookies, 351, 369, 413

coordinate-system for colors, 525

coordinate-system for graphics-objects, 519, 534,
536

coordinate-system of devices (pixel-oriented), 536

coordinates, generic-, 536

coordinates, pixel-, 536, 542

copy — deep copy of an object-graph, 162

copying a variable of primitive-type, 83

copying a variable of reference-type, 144

Core-Class, 55

core-classes, 54, 247, 249, 389

core-classes (loading), 434

core-classes, peeking inside-, 243, 244

country-code top-level-domains (DNS), 361

CPU (Central Processing Unit), 28

cross-compiler, 45

cryptographic algorithm, 478, 480

cryptographic algorithm, strength or quality of
an-, 479

cryptographic algorithms, implementations of-, 485

cryptographic-engine, 486

cryptography, 477

cryptography with key-pairs or asymmetric keys,
479

cryptography with secret- or symmetric keys, 478

Current Directory, 48

currentThread()-method (java.lang.Thread), 207,
212, 232, 401

ISBN 3-00-009429-6

currentTimeMillis()-method (java.lang.System), 254,

261
cursor (GUI-pointer), 509, 536, 542, 556, 605

Daemon-thread, 223

daemon-thread, 215, 432, 586

Data Link Layer (OSI), 354

Database, 321

database, 20, 40, 138, 193, 235, 246

database and resource-bundle, 263

database, distributed, 360

database, file-system as, 46

database, key-store-, 489

database, non-persistent-, 233

Datagram, 351

DatagramPacket (java.net), 384

DatagramSocket (java.net), 384, 421

Datalnput (java.io) interface, 300, 307

DatalnputStream (java.io), 382

DataOutput (java.io) interface, 300, 307

DataOutputStream (java.io), 382

Date (java.util), 261

deadlock (thread-specific problem), 226

decimal number-system, 34, 79, 257

declaration, 74, 84

declaration-assignment-sequence, 122, 155

decrement operators (pre-, post-), 92

Deep Cloning, 191

deep copy of an object-graph, 162

deep equal object-graphs, 162, 192

default access, 177

default assignment, 86, 87

default assignment of member-variables: YES,
148

default assignment with local variables: NONE,
121

default constructor, 149, 166

default type of number literals: int (primitve-
type), 86

default-accessible constructor, 181

default-keyword (switch-statement), 107

default-package, 180

default-package (idea), 241

default-package, in footnote, 193

Delegation, 440

delegation event-model, 19, 276, 314, 440, 571,
573,576, 585

delegation event-model (Concept in Java), 278

delegation, class-loader-, 440

design-pattern, 251, 311, 312

design-pattern (event-framework), 287

desktop, 44, 509

desktop in Swing, 610

destroy()-method (java.applet.Applet), 205, 398,
400, 618, 641

destroy()-method (java.lang.Process), 255

destroy()-method, triggerable-, 398

development-environment, 64, 65, 311, 313, 318,
450

Dialog (java.awt), 565

Dialog (java.awt) top-level screen-component, 564,
598

www.chartingJava.com 667

668

Index

dialog window, 540

dialog, modal-, 564

difference of applet and application, 460

digest, message-, 481

digital fingerprint, 481

digital signature, 483

digital signature and certification, 484

digital signatures, names of algorithms for-, 483

Dimension (java.awt), 555

dimension of an array, 234

dimension, length of a - (array), 234

dining humans (thread-specific problem), 215

direct color-model, 526

DirectColorModel (java.awt.image), 526

directory-/folder-/file-separator, 46, 254

directory-/folder-/file-separator (in packaging), 242

directory-/folder-/file-separator (policy-files), 458,
462

directory-/folder-/file-separator (URL), 364, 388

disableEvents()-method (java.awt.Component), 287

disassembler-tool: javap, 250, 642

Discrimination (security-related), 449

dispatchEvent()-method (custom-defined), 287, 288,
331

dispatchEvent()-method (java.awt.Component), 592

dispatchEvent()-method (java.awt.Component, ...),
591

disposing of a top-level screen-component, 598

Distinguished Name (DN), 481, 488, 489

Distributed Computing, 338

distributed computing, 423

distributed computing (example), 362

distributed database, 360

distributed garbage-collector, 251, 415

distributed programming, 419, 423

dithering, 535

division by zero with integers: ArithmeticExcep-
tion, 86

division-operator, 93

DN (Distinguished Name), 481, 488, 489

DNS (Domain Name Service), 348, 354, 359, 362,
381

do-statement (usually a pre-condition loop), 109

documentation-tool: javadoc, 324

Domain Name Service (DNS), 348, 354, 359, 362,
381

Domain-Name, 362

domain-name (case of letters), 361

dots per inch (dpi) resolution, 536, 537

Double (java.lang), 86, 169, 181, 194, 250, 256

Double (java.lang) constants (NaN), 256

double (primitive-type) and JVM, 87, 216

double (primitve-type), 169

double (primitve-type) and equality operator, 97

double (primitve-type) and strictfp modifier, 118,
146, 183

double (primitve-type), argument in mathemati-
cal functions, 94

double (primitve-type), behavior in a cast, 169

double (primitve-type), default type of floating-
point-literals, 79, 86

668 www.chartingJava.com

double (primitve-type), return-value of mathemat-
ical functions, 106

double (primitve-type), value of a StreamTokenizer,
301

double buffering (= off-screen rendering), 535, 542,
621

double-click (GUT concept), 510

downloading a Java Runtime System (client FROM
server), 59

Downloading files (client FROM server), 371

downloading files (client FROM server), 19, 372,
374

downloading files (client FROM server) and dis-
tributed computing, 338

downloading files (client FROM server) and mon-
itoring, 606

downloading files (client FROM server) and se-
curity, 57

downloading mail (client FROM server), 371

downloading package-files (client FROM server),
243

downloading the Java Cryptography Extension
(client FROM server), 496

downloading the Java Servlet Web Development
Kit (client FROM server), 409

dpi (dots per inch) resolution, 536, 537

drag and drop (GUI concept), 510

dragging (GUI-concept), 510

drain of message-model, 271

drawing-method, 536

drawing-surface, 528, 536

drawing-surface, a JComponent, 528, 530, 531,
538, 602

drawing-surface, a JPanel, 608

drawing-surfaces, 538

driver (system-software), 38, 43, 45, 273, 378,
508, 512, 516, 522, 572

drivers and operating-system, 508

duplicating objects, 191

dynamically-typed language, 75

Early-Bound Method, 168

editor, hex-, 449, 489

editor, hex-, see Java byte-code, 642

editor, text-, for editing security- and policy-files,
453, 457, 458, 496

editor, text-, for writing source-code, 53, 54, 57,
62, 63, 65, 323

email-client, 371

empty statement, 103

empty-block, 184, 187, 190, 255, 581

enableEvents()-method (java.awt.Component), 287,
579, 591, 593

encapsulation, 115, 122, 138, 139, 377

encapsulation and non-local variables, 195

Encoding, 35

encoding, 40, 73

encoding and content-type, 368

encoding of image-information, 521

encoding transformation with images, 535

encoding, ASCII-, 34

encoding, Unicode-, 34

ISBN 3-00-009429-6

Index

669

encoding, URL-, 375

encodings, 265

Encryption, 477

encryption algorithm, 478, 480

encryption algorithms, implementations of-, 485

encryption algorithms, modes of-, 484

encryption algorithms, names of-, 479

encryption-engine, 478

endian-order of bytes, little-/big-, 533

Engine, cryptographic-, 486

engine, encryption-, 478

environment, development-, 64, 65, 311, 313, 318,
450

equal — deep equal object-graphs, 162, 192

equal — shallow equal object-graphs, 162, 192

equal sign (=), assignment-operator, 99

equal sign (=), copying or referencing, 143

equal sign (=), tool option, 461

equality operator (==), 161-163

equality operator (==) and reference-type, 162

equality operator (==) with float and double, 97

equals()-method (java.lang.Object), 165, 190, 252,
256

equals()-method (java.lang.String), 162

Error (java.lang), 281

escape-sequence, 80

Ethernet (network hardware), 20, 29, 30, 190,
339-341, 348, 354, 360

Ethernet (network hardware) -address, 342

Ethernet (network hardware) installation hint,
378

event, context-independent-, 575

event, contextual-, 575

event-delegation model (Concept in Java), 278

Event-Dispatch-thread, 585

event-dispatch-thread, 205, 228

event-dispatch-thread, and painting-methods, 595

event-dispatch-thread, running code on the-, 589

event-example (footnote), 275

event-handler, 287, 575, 577, 585

event-mask, 287, 555, 576, 579, 581, 591, 593

event-messages (message-model), 272

event-messaging, unicast-, 287, 289, 633

event-model, 278, 329

event-model, delegation-, 19, 276, 314, 440, 571,
573, 576, 585

event-model, subscriber-, 276

event-queue, 586

event-scheduling, 572, 574

event-type-hierarchy, 578

EventListener interface (java.util), 189, 287, 288,
314, 331, 332, 573

EventListenerList (javax.swing.event), 579

EventObject (java.util), 250, 276, 287, 288, 331,
585, 633

EventQueue (java.awt), 332, 571, 586, 587

EventQueue reference, 586

EventQueue-object, 595

Exception, 113

Exception (java.lang), 280, 281, 283, 330, 637

Exception, Checked-, 281

ISBN 3-00-009429-6

exception, checked-, 280, 330

exception-handler, 283

exec()-method (java.lang.Process), 255

exec()-method (java.lang.Runtime), 254

exit()-method (java.lang.Runtime), 254

exit()-method (java.lang.System), 254, 432, 581,
651

exit()-method (java.lang.System), example, 226,
382

exp()-method (java.lang.Math), 94

expansion, property- with text-files, 458, 459

explicit type-casting, 100

exponential function (mathematical function), 94

expression, 90

Expression, Statement and Control Structure (con-
cept), 89

ext-folder, 61, 243, 244, 247, 250, 410, 429, 487,
496, 499, 641

extended file-name, 47

extending access-area by overriding, 175, 286

extends-keyword, 146, 187

extends-keyword (example), 163, 186

eXtensible Markup Language (XML), 410, 414

extension, class-, 138

extension-hierarchy, 135

Factory-Like-Method, 185, 551

factory-like-method, 56, 266, 527, 551, 569, 596,
641, 642

Factory-Method, 151

factory-method, 145, 185, 273, 381, 392, 485, 629,
642

factory-method (static), 151

factory-method (static) in footnote, 382

factory-methods and constructors, 151

Field, 148

Field (java.lang.reflect), 250, 253

field, final- (quasi-constant), 148

field, final-, example, 160

field, transient- (non-serializable), 183, 309

field, volatile- (uncached), 148, 183

field-variable, 155

fifo-container, 293

fifo-container (stream), 310

fifo-storage (first-in-first-out), 233

File (java.io), 259, 463

File Transfer Protocol (FTP), 349, 354, 371, 374,
389

file, container- (=jar-file), 491

file-/folder-/directory-separator, 46, 254

file-/folder-/directory-separator (in packaging), 242

file-/folder-/directory-separator (policy-files), 458,
462

file-/folder-/directory-separator (URL), 364, 388

file-hierarchy, 510

file-name, extended-, 47

File-System, 46

file-system as database, 46

file-system, flat-, 46

FileInputStream (java.io), 297, 298

FileInputStream (java.io) security, 463

FileOutputStream (java.io), 297, 298

www.chartingJava.com 669

670

Index

FilePermission (java.io), 459-461, 463, 472

FileReader (java.io), 298, 456, 463

FileReader (java.io) security, 453

FileWriter (java.io), 298, 456

filter-stream, 292

FilteredImageSource (java.awt.image), 610

final class (non-extensible), 146, 183

final class (non-extensible) example, 257

final field (quasi-constant), 148

final field, example, 160

final local variable, 122

final method called faster, 118, 168, 182

final method, unoverridable, 168, 182

final modifier, 117, 182

final variable (quasi-constant), 182

final, implicitly - variables in interfaces, 186

finalize()-method (java.lang.Object), 127, 152, 165,
232, 252, 415

finalize()-method and destroy()-method, 398

finalize()-method with own thread, 228, 232

finalize()-method, triggerable-, 127, 153

finalize-thread, 228

finalizer, not a class-member, 148, 166

finally-keyword, 113, 282, 330

fingerprint, digital-, 481

fire...()-method (custom-defined), 288, 331

fire...()-method (Java beans, Swing, ...), 287, 312,
314, 331, 574, 590

fireActionPerformed()-method (javax.swing.

AbstractButton), 574

firePropertyChange()-method (java.awt.Component),

315, 319, 331, 578, 603

font, 34, 265

Font (java.awt), 569

fonts, Java and, 266, 569

for-statement (usually post-condition loops), 109

Format, 35

format, 521

format, text-based, 414

forName()-method (java.lang.Class), 185, 252, 318,
394, 435, 437, 443, 468, 619, 629, 642

FP-strict, 118

Frame (java.awt), 562

Frame (java.awt) top-level screen-component, 564,
598

frame (message-model), 272

Frame (of packet-oriented protocol), 349

frame or image (of a movie, animation-context),
602

frame or packet (networking-context), 349

frame or window (as modal screen-component),
540

frame or window (GUI container), 512, 573

frame or window (GUI-context), 509

frame or window (size-change), 573

frame- or window-states (concept), 509

Framework, 237

framework, 287

freeMemory()-method (java.lang.Runtime), 254,
258, 445

frequency, 31

front-end, 507

front-end and kernel, 515

front-end, a Java desktop, 610

fireStateChanged()-method (javax.swing.AbstractButtonfront-end/kernel model, 515, 516, 542

...), b74, 577

FTP, 364

fireVetoableChange()-method (javax.swing.JComponent, FTP (File Transfer Protocol), 349, 354, 371, 374,

java.beans.VetoableChangeSupport), 315,

331

flat file-system, 46

Float (java.lang), 86, 169, 181, 250, 256

Float (java.lang) constants (NaN), 256

float (primitve-type), 86, 169

float (primitve-type) and equality operator, 97

float (primitve-type) and strictfp modifier, 118,
146, 183

float (primitve-type) as color-value, 556

float (primitve-type), behavior in a cast, 101, 169

float (primitve-type), postfixing literals, 100

floating-point-literal, 78

FlowLayout (java.awt), 543, 558

FlowLayout, default layout of many containers,
559

focus, concept of-, 509

focus, screen-component on-, 542, 552, 575, 577

focus-cycle, 509

FocusEvent (java.awt.event), 575, 577

FocusListener (java.awt.event), 577

folder-/file-/directory-separator, 46, 254

folder-/file-/directory-separator (in packaging), 242

folder-/file-/directory-separator (policy-files), 458,
462

folder-/file-/directory-separator (URL), 364, 388

670 www.chartingJava.com

389
fully-qualified class-name, 244
Function, Hash-, 482
Functions, One-Way-, 480

gamma-correction (screen-hardware related), 523

garbage-collection (Concept), 444

garbage-collection (distributed), 415

garbage-collection-thread, 223, 228, 444

garbage-collector, 153, 223, 254, 415, 450, 618

garbage-collector (distributed), 251

gateway, 353

GB (GigaBytes) more than a billion bytes, 35

gc()-method (java.lang.Runtime), 254

gc()-method (java.lang.System), 153, 223, 254, 445,
598

generic coordinates, 536

generic top-level-domains (DNS), 361

generic-/context-free event-object, 572, 573

get...()-method, 312, 313, 318

getByName()-method (java.net.InetAddress), 151,
382, 385

getClass()-method (java.lang.Object), 245, 252, 318,
437, 630, 633, 638

getClassLoader()-method (java.lang.Class), 435,
437, 439, 468, 629

ISBN 3-00-009429-6

Index

671

getContentPane()-method (javax.swing.JRootPane),

528, 536, 567

getDefaultToolkit()-method (java.awt.Toolkit), 185,
528, 579, 596, 604, 608

getDefaultToolkit()-method (java.awt.Toolkit, Com-
ponent), 551

getErrorStream()-method (java.lang.Process), 255

graph of a network, 340

graph of references, 161, 162, 191, 233, 307, 441,
444

graph of references (cloning), 191

graph, processing-, 520

Graphical User Interface (GUI), 44, 190, 507, 508,
520

getImage()-method (java.awt.Toolkit, java.applet.Applet,Graphical User Interface and applets, 615

...), 232,528, 529, 596, 608
getInputStream()-method (java.lang.Process), 255
getInputStream()-method (java.net.Socket), 297,

302, 383, 385, 386, 395

getInputStream()-method (java.net.URLConnection),

393, 395

Graphical User Interface and applications, 512

Graphical User Interface and Java-Beans, 313

Graphical User Interface and locale, 263

Graphical User Interface and MVC, 515

Graphical User Interface and operating-system,
508

getInputStream()-method (javax.servlet.ServletRequest)sraphical User Interface and policytool, 458

412
getInstance()-method (custom-defined), 160

getInstance()-method (java.security.KeyFactory),
494

getInstance()-method (java.security. KeyPairGenerator),

493
getInstance()-method (java.security. KeyStore), 495

getInstance()-method (java.security.SecureRandom),

493
getInstance()-method (java.security.Signature), 493
getInstance()-method (java.util.Calendar), 262
getInstance()-method (javax.crypto.Cipher), 497
getInstance()-method (javax.crypto.KeyGenerator),

497
getInstance()-method (some engine-class), 485, 487
getMessage()-method (java.lang. Throwable), 280
getMessage()-method (java.lang. Throwable, ...), 282
getName()-method (java.io.File), 259
getName()-method (java.lang.Class), 630
getName()-method (java.lang.Thread), 211
getOutputStream()-method (java.lang.Process), 255
getOutputStream()-method (java.net.Socket), 297,

302, 382, 385, 386, 395

getOutputStream()-method (java.net. URLConnection),

393
getOutputStream()-method (javax.servlet.
ServletResponse), 409, 412
getPackage()-method (java.lang.Package), 245
getPriority()-method (java.lang. Thread), 211, 224,
232
getProperties()-method (java.awt.Image), 607
getProperties()-method (java.lang.System), 254,
258, 556
getProperty()-method (java.awt.Image), 608
getProperty()-method (java.lang.System), 254, 259,
456

getRuntime()-method (java.lang.Runtime), 254, 258,

445
getSecurityManager()-method (java.lang.System),
254, 255
getSource()-method (java.awt.Image), 607
getSource()-method (java.util. EventObject), 288,
315, 545, 546, 611
GIF (Graphics Interchange Format), 369, 522, 529
GigaBytes (GB) more than a billion bytes, 35
glyph of a font, 34, 82, 265

ISBN 3-00-009429-6

Graphical User Interface, design of, 513

graphical-object, 507, 519

graphical-object, concept, 534

Graphics (java.awt), 400

Graphics (java.awt) as software-library, 505, 519,
534, 536, 540, 556

Graphics (java.awt) typed reference to native-code,
185, 527, 556

Graphics Interchange Format (GIF), 369, 522, 529

graphics toolbox, 538

graphics toolbox/-context/-library, 519, 536, 540,
599

graphics-card (hardware), 522

graphics-card, active- (hardware), 198

graphics-library, 538

graphics-object, 505, 597

GraphicsEnvironment (java.awt), 266, 551, 569

GregorianCalendar (java.util), 262

GridBagLayout (java.awt), 543, 559

GridLayout (java.awt), 543, 558, 569

GuardedObject (java.security), 474

GUI (Graphical User Interface), 44, 190, 507, 508,
520

GUI and applets, 615

GUI and applications, 512

GUI and Java-Beans, 313

GUI and locale, 263

GUI and MVC, 515

GUTI and operating-system, 508

GUI and policytool, 458

GUI, design of, 513

Handler, Content-, 369

handler, exception-, 283

Handler, Protocol-, 349

Handler-code, 113

handler-method, 113

hard-disk (hard-drive), 17

hard-disk (hard-drive) and persistent storage, 28,
30, 46, 238, 306, 311, 321, 433, 447, 510

Hardware, 36

Hash-Function, 482

Hashcode, 481

hashcode, 319

hashCode()-method (java.lang.Object), 161, 165,
191, 252, 256, 482

www.chartingJava.com 671

672

Index

hashCode()-method and identity of an object, 131,
161, 419

hashcode-value of type int, 161

hashcode-value: 10 bytes, 483

hashtable, 233, 237

Hashtable (java.util), 254, 486, 634

heavyweight screen-component, 559, 562, 564, 566,
595, 597

heavyweight screen-component (concept), 353, 548

Heavyweight-Code, 550

HelloWorld-application, 71

Hertz (unit of frequency), 31

hex-editor, 449, 489

hex-editor, see Java byte-code, 642

hexadecimal number-system, 34, 100

hexadecimally coded, 36, 78, 80, 87, 96, 100, 342,
375, 556

HFS (Hierarchical File System), scope and access-
area, 172

hierarchical file system, 298

Hierarchical File System (HF'S), scope and access-
area, 172

hierarchical structures, their importance, 543

hierarchy of a domain-name, 361

hierarchy of classes, 133, 135, 164, 247

hierarchy of classes (AWT/Swing), 564

hierarchy of containment (screen-components), 440,
541, 543

hierarchy of event-types, 578

hierarchy of files, 247, 510

hierarchy of packages, non-existent, 240

hierarchy of sub-types of Throwable, 281

hierarchy, class-, 138

hierarchy, domain-name, 361

hierarchy, of exceptions, 113

host of a network, 339

host-application (of an applet), 613

Host-Name, 339

HSB-model, 525

HSV-like color-models, 525

HSV-model, 525

HTML (HyperText Markup Language), 414

HTML-tags, 21, 324

HTML-tags (applet), 68, 402, 431, 614

HTML-tags (servlet), 406, 414

HTTP, 364

HTTP (HyperText Transfer Protocol), 369

HTTP (Hypertext Transfer Protocol), 348, 349,
354, 363, 373, 413

http:/webopedia.internet.com, 660

hyperlink, 371

hypertext, 371

HyperText Markup Language (HTML), 414

HyperText Transfer Protocol (HTTP), 369

Hypertext Transfer Protocol (HTTP), 348, 349,
354, 363, 373, 413

icon, 44, 508

IDE (Integrated Development Environment), 64,
313, 323, 411

identifier, 81

identifier, (variable-), 40

672 www.chartingJava.com

identifier, access-area of-, 172

identifier, ambiguous-, 187

identifier, case-sensitivity, 81

identifier, scope of-, 122, 171

identifier, variable-, 74

identity of a person, 477, 479, 481-483

identity of an object, 131, 161

identity of an object and hashCode()-method, 131,
161, 419

identity of key-pair-owner, 481

IEEE 754 Standard (for floating-point-numbers),
85

if-statement (branching), 105

IllegalAccessError (java.lang), 281

IllegalAccessException (java.lang), 281

Image (java.awt), 527, 530, 556

Image typed reference to native code, 184, 528

Image, manipulation, 596, 607

ImageConsumer (java.awt.image), 563, 610

ImageObserver (java.awt.image), 607

ImageObserver interface (java.awt.image), 563

ImageProducer (java.awt.image), 610

imageUpdate()-method (java.awt.image.

ImageObserver), 530, 563, 607, 608

imageUpdate()-method, triggerable-, 563

implements-keyword, 146, 187

implements-keyword (example), 186

implements-keyword and multiple super-interfaces,
188

import-keyword, 244

import-keyword, invisible-, 244

Inactive (=Interrupted) thread, 200

increment operators (pre-, post-), 92

incremental development (class-extension), 164

incremental development (trying and retrying),
599, 637

index color-model, 526

IndexColorModel (java.awt.image), 526

IndexOutOfBoundsException (java.lang), 281

indirect color-model, 526

inequality operator (! =), 96

InetAddress (java.net), 151, 381, 421

information-hiding, 122, 129, 377

infrastructure, three-tiered communication-, 277,
352, 406, 414

infrastructure-programmer, 27

Infrastructure-Programming, 38

infrastructure-programming (security), 455, 486,
497

infrastructure-programming (switchboard exam-
ple), 633

inheritance, 139

inheritance, multiple-, 139

init()-method (java.applet.Applet), 205, 398, 400,
618, 619, 641

init()-method (javax.crypto.Cipher), 497

init()-method (javax.servlet.GenericServlet), 411,
641

init()-method, triggerable-, 398

Initialized thread, 211

initializer, array-, 235

ISBN 3-00-009429-6

Index

673

initializer, static- and instance- (member sequence
matters), 122

initializer, static-/instance-, 152

inner class, 157

input-stream, 296

InputEvent (java.awt.event), 579, 581, 582

InputStream (java.io), 254, 310, 385, 429

InputStream (java.io) abstract, 296

InputStreamReader (java.io), 304

insert()-method (java.lang.StringBuffer), 257

Inset (java.awt), 558

instance, 139

instance and object and variable, 149

instance-initializer, 152, 441, 641

instance-initializer and blank-finals, 182

instance-initializer, not a class-member, 148, 166

instance-method, 139, 182

instance-variable, 139, 148, 182

instance-variable, unshadowing an-, 172

instanceof-keyword, 191, 498

instantiation, 74

int (primitive-type), 85, 95, 169, 642

int (primitive-type), argument in switch-statement,
106

int (primitive-type), behavior in a cast, 87

int (primitive-type), bitmask, 563, 581

int (primitive-type), buffer-size, 296

int (primitive-type), coding-constants, 563, 575,
584

int (primitive-type), default type of number liter-
als, 86

int (primitive-type), identity-tag of objects, 161

int (primitive-type), JRE-exit-status, 254, 432

int (primitive-type), pixel-data, 526

int (primitive-type), priority of thread, 211

int (primitive-type), stream-data, 296

int (primitive-type), TCPport, 388

int (primitve-type) as color-value, 556

Integer (java.lang), 169, 181, 252, 256

integer-literals, 77

Integrated Development Environment (IDE), 64,
313, 323, 411

Inter Process Communication (IPC), 230, 231

inter-application communication, 353

Interface, 190

interface, peer-, 59, 251

interface-class (RMI), 416

interface-type, 143, 185

interface-type, arguments of-, 190

interface-type, type-casting identifiers to-, 194,
404

interfaces and class-members, 190

interfaces, list of mentioned-, 653

InternalError (java.lang), 281

internationalization, 259

Internet, 344

Internet (definition), 372

Internet Protocol (IP), 344, 348, 349, 354, 357,
359, 372, 377

Internet Protocol Version 4 (IPv4), 357

Internet Protocol Version 6 (IPv6), 357

ISBN 3-00-009429-6

Internet, its defining protocol-stack, 348

Internet-Address, 359

Internet-address (=IP-address), 273, 358

Interpreter, 39

Interrupt, 212

interrupt()-method (java.lang.Thread), 204, 212,
213, 232

Interrupted (=Inactive) thread, 200

interrupted()-method (java.lang.Thread), 212, 232

intialized by assignment: local variable of primitive-
type, 121

intialized to default value: member-variable of
primitive-type, 148

Intranet, 344, 372, 377

introspection, 629

introspection (software-components), 311, 318

introspection: applet, 402

introspection: package, 245

introspection: servlet, 411

invisible extends-Object-clause, 164, 169

invisible file (in Unix-like operating-systems), 63,
458, 469, 492

invisible import-java.lang.-clause, 244

invokeAndWait()-method (javax.swing.SwingUltilities),

589
invokeLater()-method (javax.swing.SwingUltilities),
589
IOException (java.io), 281, 318, 330
IP (Internet Protocol), 344, 348, 349, 354, 357,
359, 372, 377
IP-Address, 359
IP-address, 339, 357, 360, 381, 410, 421
IP-address (assignment organization), 359
IP-mask, 358, 378
IPC (Inter Process Communication), 230, 231
IPv4 (Internet Protocol Version 4), 357
IPv6 (Internet Protocol Version 6), 357
is...()-method, 312, 313
isAlive()-method (java.lang.Thread), 211, 218, 226,
227, 232
isArray()-method (java.lang.Class), 253
isAssignableFrom()-method (java.lang.Class), 253
isDaemon()-method (java.lang.Thread), 224, 232
isEventDispatchThread()-method (javax.swing.
SwingUtilities), 538, 586, 588, 600
isInstance()-method (java.lang.Class), 253
isInterface()-method (java.lang.Class), 253
isInterrupted()-method (java.lang.Thread), 212,
232
isPrimitive()-method (java.lang.Class), 253
ItemEvent (java.awt.event), 547, 575, 578
ItemListener (java.awt.event), 547, 578
iteration, 108

J2EE (Java 2 Enterprise Edition), 18, 20, 277,
319, 352, 407, 414, 501

J2ME (Java 2 Micro Edition), 18, 20

J2SE (Java 2 Standard Edition), 18, 20, 381

JApplet (javax.swing), 68, 396, 397

JApplet (javax.swing) heavyweight, 549, 550, 562,
565, 597

JApplet as AWT-component, 618

www.chartingJava.com 673

674

Index

JApplet is a RootPaneContainer, 566

jar, Archiving-Tool, 325

jar, archiving-tool, 54, 242, 243, 250, 489, 492

JAR- (Java ARchive) file-format, 326

JAR-File, 326

JAR-file, 54, 246, 326

JAR-file (and applet), 403, 614

JAR-file (and directory-path), 247

JAR-file (and ext-directory), 64, 179, 243, 245,
487

JAR-file (and package), 240

JAR-file (and Provider Infrastructure), 487

JAR-file (and running applications), 327

JAR-file (signed), 491

JAR-file (with prototypes of Java source-code), 645

JAR-file, signed-, 491

jarsigner, signing-tool, 489, 492

Java, 51, 71

Java 2 Enterprise Edition (J2EE), 18, 20, 277,
319, 352, 407, 414, 501

Java 2 Micro Edition (J2ME), 18, 20

Java 2 Standard Edition (J2SE), 18, 20, 381

Java application, 38, 51, 613

Java ARchive (JAR) file-format, 326

Java compiler, 52, 53, 124, 184, 257, 280, 431

Java compiler and -generated names, 83

Java compiler and character-encoding, 71, 79

Java compiler and comparison-operator, 163

Java compiler and compilation unit, 246

Java compiler and nested classes, 159

Java compiler and security, 450

Java compiler and unreachable statements, 106

Java compiler searching files, 63, 65

Java compiler, import-on-demand, 244

Java compiler, in JDK, 54

Java compiler, late-binding, 168, 183

Java compiler, letter-case sensitive, 66

Java DataBase Connectivity (JDBC), 321

Java Development Kit (JDK), 54

Java Development Kit (JDK), installing-, 59

Java Foundation Classes (JFC), 505, 623

Java keywords, 81

Java Runtime Environment (JRE), 51, 52, 250,
431

Java Runtime Environment (JRE) and abstract
references accessing native code, 184, 551

Java Runtime Environment (JRE) and applets,
397,613

Java Runtime Environment (JRE) and applica-
tion, 72

Java Runtime Environment (JRE) and daemon-
threads, 223

Java Runtime Environment (JRE) and Java Run-
time System (JRS), 55

Java Runtime Environment (JRE) and security,
128, 448

Java Runtime Environment (JRE) and servlets,
406

Java Runtime Environment (JRE) and threading
portability, 204

674 www.chartingJava.com

Java Runtime Environment (JRE) and trigger-
able methods, 128

Java Runtime Environment (JRE) as sandbox,
463

Java Runtime Environment (JRE) communica-
tion through streams, 297

Java Runtime Environment (JRE) DEFINITION,
55

Java Runtime Environment (JRE) extended by
packages, 240

Java Runtime Environment (JRE), class-loading,
433

Java Runtime Environment (JRE), communica-
tion by method-calls, 414

Java Runtime Environment (JRE), communica-
tion with event-objects, 571

Java Runtime Environment (JRE), errors and ex-
ceptions, 279, 329

Java Runtime Environment (JRE), garbage-collection,

444

Java Runtime Environment (JRE), introspection,
254

Java Runtime Environment (JRE), multiple- on
one native platform, 231

Java Runtime Environment (JRE), tools for sin-
gle user interfacing, 505

Java Runtime Environment, Creation-tool: java,
51, 431

Java Runtime Environment, creation-tool: java,
54, 55, 64, 65, 72, 231, 236, 246, 434,
435, 451, 457, 461, 465, 473, 505

Java Runtime System (JRS), 51, 53, 54, 65, 249

Java Runtime System (JRS) and Java Runtime
Environment (JRE), 55

Java Runtime System (JRS) DEFINITION, 56

Java Virtual Machine, 40

Java Virtual Machine (JVM), 36, 40, 52, 54, 55,
444

Java Virtual Machine (JVM) and threads, 203,
216, 232

Java Virtual Machine (JVM), 32bit bus, 87

Java Virtual Machine (JVM), How to start?, 431,
641

java, tool for Creating a Java Runtime Environ-
ment, 51, 431

java, tool for creating a Java Runtime Environ-
ment, 54, 55, 64, 65, 72, 231, 236, 246,
434, 435, 451, 457, 461, 465, 473, 505

Java-Bean, 251, 313

Java-Beans, 311

java-tool as trigger for a method-call, 127

java.beans, switchboarding, 314

java.lang package automatically imported, 244

java.policy (text-file), 458, 462, 467, 469, 501

java.security (text-file), 455, 457, 458, 460, 462,
465, 467, 487, 489, 501

javac, Compiler-tool, 72, 431

javac, compiler-tool, 60, 246, 333, 397, 407, 473

javadoc, documentation-tool, 324

javap, disassembler-tool, 250, 642

JavaScript, 338

ISBN 3-00-009429-6

Index

675

JButton (javax.swing), 516, 544, 576, 580, 621

JComponent (javax.swing), 536, 538, 551

JComponent (javax.swing) as super-class, 565

JComponent (javax.swing) methods, 559

JComponent as drawing-surface, 528, 530, 531,
538, 602

JComponent as source of event-objects, 590

JComponent method isLightweightComponent(),
550

JComponent method paintComponent(), 552

JComponent opacity, 550

JDBC (Java DataBase Connectivity), 321

JDesktopPane (javax.swing), 610

JDialog (javax.swing), 565, 566

JDialog (javax.swing) heavyweight, 549, 550, 562,
597

JDialog (javax.swing) top-level screen-component,
531, 564, 598

JDK (Java Development Kit), 54

JDK (Java Development Kit), installing-, 59

JFC (Java Foundation Classes), 505, 623

JFrame (javax.swing), 528, 561, 563, 565, 566,
568, 597, 621

JFrame (javax.swing) heavyweight, 549, 550, 562,
597

JFrame (javax.swing) top-level screen-component,
531, 598

JFrame (javax.swing) top-level-screen-component,

564

JInternalFrame (javax.swing), 566, 567, 598, 610

JLabel (javax.swing), 544, 566, 621

JLayeredPane (javax.swing), 567, 568

JList (javax.swing), 545, 566

JMenu (javax.swing), 546, 566

JMenuBar (javax.swing), 546, 567

JMenultem (javax.swing), 546

join()-method (java.lang.Thread), 211, 213, 216,
219, 221, 227, 232, 255, 329

Joint Photographic Experts Group (JPEG), 369,
522, 529

JPanel (javax.swing), 566-568, 597, 599, 621

JPanel as drawing-surface, 608

JPEG (Joint Photographic Experts Group), 369,
522, 529

JPopupMenu (javax.swing), 598, 610

JProgressBar (javax.swing), 547, 548, 566

JRE (Java Runtime Environment), 51, 52, 250,
431

JRE (Java Runtime Environment) and abstract
references accessing native code, 184, 551

JRE (Java Runtime Environment) and applets,
67, 397, 613

JRE (Java Runtime Environment) and applica-
tion, 72

JRE (Java Runtime Environment) and applica-
tions, 65

JRE (Java Runtime Environment) and daemon-
threads, 223

JRE (Java Runtime Environment) and security,
128, 448

ISBN 3-00-009429-6

JRE (Java Runtime Environment) and servlets,
406

JRE (Java Runtime Environment) and threading
portability, 204

JRE (Java Runtime Environment) and trigger-
able methods, 128

JRE (Java Runtime Environment) as sandbox,
463

JRE (Java Runtime Environment) DEFINITION,
55

JRE (Java Runtime Environment) extended by
packages, 240

JRE (Java Runtime Environment), class-loading,
433

JRE (Java Runtime Environment), communica-
tion by method-calls, 414

JRE (Java Runtime Environment), communica-
tion through streams, 297

JRE (Java Runtime Environment), communica-
tion with event-objects, 571

JRE (Java Runtime Environment), errors and ex-
ceptions, 279, 329

JRE (Java Runtime Environment), garbage-collection,

444

JRE (Java Runtime Environment), introspection,
254

JRE (Java Runtime Environment), multiple- on
one native platform, 231

JRE (Java Runtime Environment), tools for sin-
gle user interfacing, 505

JRE, Creation-tool: java, 51, 431

JRE, creation-tool: java, 54, 55, 64, 65, 72, 231,
236, 246, 434, 435, 451, 457, 461, 465,
473, 505

JRootPane (javax.swing), 561, 566, 568

JRS (Java Runtime System), 51, 53, 54, 65, 249

JRS (Java Runtime System) DEFINITION, 56

JSlider (javax.swing), 547, 548, 574

JToolTip (javax.swing), 560

JVM (Java Virtual Machine), 36, 40, 52, 54, 55,
444

JVM (Java Virtual Machine) and threads, 203,
216, 232

JVM (Java Virtual Machine), 32bit bus, 87

JVM (Java Virtual Machine), How to start?, 431,
641

JWindow (javax.swing), 545, 565, 566, 599, 610,
621

JWindow (javax.swing) heavyweight, 549, 550,
562, 597

JWindow (javax.swing) top-level screen-component,

531, 564, 598

kB (kiloBytes) 1024 bytes, 35, 537
kernel and front-end, 515
kernel/front-end model, 515, 516, 542
Key (java.security), 497

key of hashtable, 233, 263

key-chain, 484

key-pair algorithms, names of-, 481
key-pair-cryptography, 479

key-store (definition), 488

www.chartingJava.com 675

676

Index

key-store (for public keys), 488

key-store database, 489

KeyAdapter (java.awt.event), 581

Keyboard, 572, 584

keyboard, 29, 271, 314, 507

KeyEvent (java.awt.event), 577, 581, 584

KeyFactory (java.security), 485, 493

KeyListener (java.awt.event), 577, 581

keymanagement-tool: keytool, 489, 492

KeyPair (java.security), 493

KeyPairGenerator (java.security), 485, 493, 497

keyPressed()-method (java.awt.event.KeyEvent),
584

KeyStore (java.security), 492, 494

keytool, keymanagement-tool, 489, 492

keywords, Java-, 81

kiloBytes (kB) 1024 bytes, 35, 537

Label (java.awt), 566
labeled statement, 111

labeled while-statement (a pre-post-condition loop),

111

language, JavaScript-, 338

language, non-procedural-, 40

language, procedural-, 40

late-binding language, 168

late-binding of code, 75

Late-Bound Method, 168

Latency, 587

layer-model, 353

layer-model (RMI), 417

layer-model of computer-platform, 52, 353, 5650

layer-model of protocols, 348

layer-model, OSI-, 353

layers for painting and screen-components, 567,
615

layers of card-layout, 559

layout-manager, 543

layout-manager and absolute positioning, 542

LayoutManager interface (java.awt), 556, 558

layouts, multiple- in one container, 559, 566

least significant byte, 533

left-associative, 101

length of a dimension (array), 234

length()-method (java.io.File), 259

length()-method (java.io.RandomAccessFile), 299

length()-method (java.lang.String), 227, 257, 384,
387, 394, 456

length()-method (java.lang.StringBuffer), 257

letter, case of, 34, 66, 81, 82, 491

letter, case of (in domain-names), 361

letter, case of (in URIs), 375, 394

letter, case of, in integer-literal of type long, 78

lifelock (thread-specific problem), 226

lifo-storage (last-in-first-out), 233

lightweight process, 230

lightweight screen-component, 559, 565, 566

lightweight screen-component (concept), 353, 549

Lightweight-Code, 550

line-separator, 254, 304

List (java.awt), 566, 578

List (java.util), 237, 238

676 www.chartingJava.com

List (java.util) java.awt), 239

list of listener-objects (with Swing-components),
579

list()-method (java.io.File), 259

list()-method (java.rmi.Naming), 417

list()-method (java.security.Provider), 486

list()-method (java.util.Properties), 254, 258

listenerList (variable of javax.swing.JComponent),
579

ListSelectionEvent (javax.swing.event), 547

ListSelectionListener (javax.swing.event), 547

literal, boolean-, 79

literal, character-, 73, 79

literal, class-, 252, 437

literal, floating-point-, 78

literal, integer-, 77

literal, literal form, 40, 73, 74

literal, null-, 144

literal, number-, 73

literal, number- (default type: int), 86

literal, string-, 81, 257

literals in Java, 77

literate programming, 323

little-endian-order of bytes, 533

loadClass()-method (java.lang.ClassLoader), 255,
438-441

loading of a class, 152, 433

local class, 157

local type, 124

Local Variable, 121

local variable, 121

local variable (and field), 148

local variable of primitive-type: initialized by as-
signment, 121

local variable, final-, 122

local variable, scope of-, 122

local variable-declaration, 122

local variables and threads, 217

Locale (java.util), 260-263, 402, 617

locale of screen-component, 542

localization, 259

Locking data, 214

log()-method (java.lang.Math), 95

logical connection, 343

Long (java.lang), 169, 181, 256

long (primitive-type), 85, 95, 169

long (primitive-type) and JVM, 87, 216

long (primitive-type), bitmask, 287, 555, 593

long (primitive-type), byte-count, 296

long (primitive-type), milliseconds, 223, 254, 261

long (primitive-type), NEVER length of an array,
234

long (primitive-type), postfixing literals, 100

loop/code, post-condition-, 90

loop/code, pre-condition-, 90

looping, 90, 108

looping (do-statement), 109

looping (for-statement), 109

looping (while-statement), 108

lower-case letter, 34, 82, 257, 394

machine-code, 37, 38

ISBN 3-00-009429-6

Index

677

machine-synchronization, 216

main()-method characterizes an application, 38,
65, 127, 141, 142, 154

main()-method, explicitly called-, 630

main()-method, static-, 71, 142, 154

main()-method, triggerable-, 72, 127, 185

main- or main()-thread, 205, 207, 228, 232

Map (java.util), 237

Mask, 533

mask, 287, 555, 563, 576, 579, 581, 591, 593

mask, IP-, 358, 378

mask, subnet-, 358, 378

Math (java.lang), 95, 106, 182, 194, 227, 250, 257

Math (java.lang) private constructor, 150, 181

math (java.math package), 251

mathematical function: exponential function, 94

mathematical function: natural logarithm, 95

mathematical function: power function, 95

mathematical function: square root, 94

MB (MegaBytes) more than a million bytes, 35,
537

MegaBytes (MB) more than a million bytes, 35,
537

MegaHertz (unit of frequency), 31

Member of a class, 148

member, accessing class-, 171

Member, Class-, 148, 166

member, class-, 147, 148, 154

member, package-, 240

member-class, 157

member-variable, 148

member-variable of primitive-type: initialized to
default value, 148

members, accessing class-, 156

members, interfaces and class-, 190

MemorylmageSource (java.awt.image), 530, 596,
610

menu, 511, 546

Menu (java.awt), 566

menubar, 511

MenuBar (java.awt), 566

message, 113

message (in message-model), 271

message (in object-orientation), 139

Message-Digest, 482

message-digest, 481

message-model, 271, 606

message-objects, 137

MessageDigest (java.security), 485

method, 139

Method (java.lang.reflect), 250, 253, 629, 630, 635

method and behavior (in object-orientation), 133

method, (static) factory-, 151

method, (static) factory- (in footnote), 382

method, abstract- (non-implemented method), 184

method, abstract- (non-implemented method, con-
cept), 134, 136, 138

method, accessor- (of a software-component), 312

method, asynchronous-, 231

Method, Blocking-, 129

method, blocking-, 231

ISBN 3-00-009429-6

method, class-, 138, 182

method, content-handler-, 369

Method, Early-Bound- and Late-Bound-, 168

method, event-handler-, 287, 575, 577, 585

Method, Factory-, 151

method, factory-, 145, 185, 273, 381, 392, 485,
629, 642

Method, Factory-Like-, 185

method, factory-like-, 56, 527, 551, 569, 596, 641,
642

method, final-, called faster, 118, 168, 182

method, final-, unoverridable, 168, 182

method, handler-, 113

method, instance-, 139, 182

method, native-, 183

Method, Non-Blocking-, 231

method, non-blocking-, 231

method, overloaded-, 139, 168

method, overridden-, 139, 168

Method, Overriding-, 168

method, protocol-handler-, 349

method, static-, 154, 182

method, strictfp-, 183

method, synchronized-, 183

method, the caller of the, 642

Method, Triggerable-, 128

method-call, 118

method-call history, 470

method-declaration, 117

method-Signature, 117, 124

method-signature (in abstract methods), 184

method-signature (in interfaces), 187

method-signature (in overriding methods), 168

methods for rendering (an image), 536

methods in sub-classes overriding methods in super-
classes, 168

middleware, 353

MIME-type, 389, 393

MIME-types, 368

minus-operator (binary), 94

minus-operator (unary), 93

modal dialog, 564

modal screen-component, 540, 542

Model and MVC, 515

Model Delegate model, 516, 542

model of thread-states, 210

Model View Controller model, 515

model, callback-, 276

model, chain-, 276, 440, 574

model, color-, 522

model, component-, 138, 381, 542

model, computer-, 19, 23

model, delegation-event-, 19, 276, 314, 440, 571,
573, 576, 585

model, event-, 278, 329

model, event-delegation- (Concept in Java), 278

model, kernel/front-end-, 515, 516, 542

model, layer, 353

model, layer- of computer-platform, 52, 353, 550

model, message-, 271, 606

model, Model View Controller, 515

www.chartingJava.com 677

678

Index

model, object/class-, 131

model, object/class- (in programming language),
140

model, processor-, 39

model, protocol-, 274

model, pull-, 274, 520

model, push-, 520, 574

model, stream-, 272

model, subscriber-event-, 276

model, three-tier-, 352, 406

model-variable (MVC-concept), 516

modifier, 117

Modifier (java.lang.reflect), 250

modifier, abstract-, 181

modifier, access-, 177, 179, 180, 429

modifier, access- (protocol character), 345

modifier, final-, 182

modifier, native- (for methods), 183

modifier, no-, 176, 181

modifier, private-, 176, 181

modifier, protected-, 176, 180

modifier, public-, 176, 180

modifier, static-, 182

modifier, strictfp- (for classes and methods), 183

modifier, synchronized- (for methods), 183

modifier, transient- (for fields), 183, 309

modifier, volatile- (for fields), 183

Modularization, 240

modulo-operator, 93

most significant byte, 533

Mouse, 508, 571, 581

mouse, 29, 44, 127, 212, 271, 314, 371, 507

MouseAdapter (java.awt.event), 581, 584, 599

mouseClicked()-method (java.awt.event.MouseListener),

582, 584, 586, 595, 599, 600
MouseEvent (java.awt.event), 576-578, 581
MouseEvent constants, 577
MouseListener (java.awt.event), 577, 581
MouseMotionListener (java.awt.event), 577, 581,

601
mouseMoved()-method (java.awt.event.

MouseMotionListener), 5682, 587, 595, 601,

602
multi-processing, 199
multi-threading, 199
multicasting, 277, 343
multiple inheritance, 139
multiple inheritance and ambiguity, 136
multiple super-classes (concept), 136, 139, 187
multiplication-operator, 93
multipoint connection, 343
Multipurpose Internet Mail Extension-types, 368
multithreading (long and double), 87
MVC, Model View Controller, 515

name, ambiguous variable-, 187, 239

Name, Variable-, 40, 74

name, variable-, 73, 83, 119

name, variable-, representing a reference, 145
Name-Space, 123, 429

name-space, 430

name-space and security, 450

678 www.chartingJava.com

name-space considerations, 472

name-space of class-loader, 436, 469

name-space of package, 240

name-space, flat- (of packages), 241, 246

Naming (java.rmi), 417

naming conventions, 83, 140

NaN (Not a Number) constant of Float- and Double-
class, 92, 257

NaN (Not a Number) usage, 86

NaN-expression (Not a Number), 86, 96

narrowing an identifier’s type, 170

narrowing cast, 169

native method, 183

native modifier (for methods), 183

Native Software, 53

natural logarithm (mathematical function), 95

negation-operator, bitwise- (), 97

negation-operator, boolean- (!), 93, 97, 98

NEGATIVE_INFINITY usage, 86

NEGATIVE_INFINITY, constant of Float- and Double-
class, 257

nested class, 157

Network Layer (OSI), 354

network, connection-oriented-, 345

network, connectionless-, 345

network, sub-, 343

network, virtual-, 343, 357

network-order of bytes, 533

network-protocol, technology-specific-, 348

network-topology, 340

new-keyword and anonymous object of interface-
type Runnable, 198

new-keyword and anonymous objects, 159

new-keyword and array-type, 234

new-keyword and factory-methods, 151

new-keyword and reference-type, 77, 142, 145,
150, 253

newlInstance()-method (java.lang.Class), 151, 253,
439, 499, 619, 642

no-name-package, 241

NoClassDefFoundError (java.lang), 61, 171, 281,
436

node of a network, 339

Non-Blocking Method, 231

non-blocking method, 231

non-local variable, 123

non-local variable (definition), 117

non-local variables and encapsulation, 195

non-localized switching-mechanism, 283

Nonvisible (state of screen-component), 598

nonvisible (state of screen-component), 541

NOT-operator (!), 97, 98

notify()-method (java.lang.Object), 211, 213, 216,
221, 223, 232, 252, 329

notify...()-method (custom-defined), 287, 331

notify...()-method (Swing, ...), 314

notifyAll()-method (java.lang.Object), 223, 232, 252

notifyObservers()-method (java.util.Observable),
285, 330

null-literal, 144

NullPointerException (java.lang), 281, 289

ISBN 3-00-009429-6

Index

679

Number abstract (java.lang), 181, 256
number-literal, 73

number-literal (default type: int), 86
number-system, binary-, 34
number-system, decimal-, 34, 79, 257
number-system, hexadecimal-, 34, 100
number-system, octal-, 100

object, 131, 139

Object (java.lang), 161, 164, 252

Object (java.lang) array of -, 235

Object (java.lang) as message-object’s type, 284,
285

Object (java.lang) as super-class, 164, 166, 252,
564

Object (java.lang) class without a super-class, 164

Object (java.lang) clone()-method, 151, 168, 192,
258

Object (java.lang) equals()-method, 163

Object (java.lang) finalize()-method, 127, 153, 398

Object (java.lang) getClass()-method, 437

Object (java.lang) hashCode()-method, 161, 482

Object (java.lang) in casting, 169

Object (java.lang) super-class of Throwable, 280,
281

Object (java.lang) wait() and notify()-methods, 223,
329

object and instance and variable, 149

object locked by one of its synchronized instance-
methods, 214

object’s state, behavior and identity, 131, 161

object, anonymous-, 159, 279, 581

object, constant-, 183

object, container-, 138

object, graphics-, 505, 597

object-code, 38

object-graph, 161, 191, 233, 307, 441

object-graph (cloning), 191

object-graph (in cloning), 191

Object-Orientation, 131

object-orientation, 637

object-orientation (event-messaging), 278

object-orientation (software-components), 311

object-orientation and Java, 193

object-orientation in Java, 142

object-orientation, behavior and method, 133

object-orientation, variable and state, 133

object/class-model, 131

object/class-model (in programming language), 140

ObjectInput interface (java.io), 308

ObjectInputStream (java.io), 298, 308, 318

ObjectOutput interface (java.io), 308

ObjectOutputStream (java.io), 298, 307, 308, 318

Observable (java.util), 284, 330

Observable-Observer switchboarding, 285

Observer interface (java.util), 285, 330

octal number-system, 100

off-screen rendering (=double buffering), 535, 542,
621

on-screen rendering, 535

One-Time-Server, 386

One-Way-Functions, 480

ISBN 3-00-009429-6

open protocol, 347

open-source, 659

Operating-System (OS), 17, 44

operating-system (0S), 338, 516

operating-system and drivers, 508

operator, AND- (&&), 98

operator, assignment- (=), 99

operator, assignment- (primitive- and reference-
type), 144

operator, bitwise-negation- (), 97

operator, boolean negation- (!), 93, 97, 98

operator, conditional- (?), 99

operator, division-, 93

operator, equality- (==), 161-163

operator, inequality- (! =), 96

operator, minus- (binary), 94

operator, minus- (unary), 93

operator, modulo-, 93

operator, multiplication-, 93

operator, NOT- (1), 97, 98

operator, plus- (binary), 94

operator, plus- (unary), 93

operator, pre-deprecation-, 127

operator, qualification-, 182

operator, remainder-, 93

operator, shift- (example), 533

operator, string-concatenation-, 95

operators, additive-, 94

operators, assignment-, 99

operators, binary-, 93

operators, bitwise shift-, 95

operators, shift-, 95

order of bytes, big-endian-, 533

order of bytes, little-endian-, 533

order of bytes, network-, 533

OS (Operating-System), 44

OS (operating-system), 338, 516

OSI layer-model, 353

OutOfMemoryError (java.lang), 281, 444

output-stream, 295

OutputStream (java.io), 255, 310, 385

OutputStream (java.io) abstract, 296

OutputStreamWriter (java.io), 304

overflow/underflow warning with floating-point op-
erations: NONE, 86

overflow/underflow warning with integers: NONE,
86

overloaded constructor, 151, 174

overloaded method, 139, 168

Overloading Methods, 125

overloading methods and polymorphism, 194

overridden method, 139, 168

overriding a static method, 168

overriding has to extend accessibility, 168

overriding makes methods accessible, 192, 286

Overriding Method, 168

overriding methods and final modifier, 168

overriding methods and polymorphism, 194

overriding variables?, 139

P-code, 39
pack()-method (java.awt.Window), 562, 598—-600

www.chartingJava.com 679

680

Index

Package, 240

Package (java.lang), 245

package introspection, 245

package naming, 241

package, anonymous-, 241

package, default-, 180

package, default- (idea), 241

package, default-, in footnote, 193

package, install a -, 242

package, no-name-, 241

package, unnamed-, 241

package, write a -, 240

package-hierarchy non-existent, 240

packages, application inside named-, 241, 246

packages, list of mentioned-, 653

packet (message-model), 272

Packet (of packet-oriented protocol), 349

packet or frame (networking-context), 349

packet-example (footnote), 275

Packet-Oriented Protocol, 349

packet-oriented protocol, 275, 351

packet-routing, 345

packet-routing, IP-, 358

packet-segmentation in networks, 351

paint()-method (java.awt.Component, ...), 128, 185,
205, 397, 527, 536, 539, 552, 595

paint()-method (javax.swing.JComponent, ...), 559

paint()-method importing a reference to native
code, 185, 527

paint()-method of applet, 397

paint()-method, triggerable-, 397, 536, 552, 576,
595, 597

paint()-method, triggerable- (fixes view), 540

parser, 648

partial transparency, 527, 550

passing arguments by-reference, 120, 256

passing arguments by-value, 120, 225, 256

path in a network, 342

Path-Name, 47

path-name and package-name, 240, 242, 244

path-name and property expansion, 458

path-name and property expansion (example), 459

path-name and URI, 409, 410

path-name in URL, 364, 374

path-name separator, 48, 254

Path-Name, Absolute-, 48

path-name, absolute- (example), 510

Path-Name, Relative-, 48

path-name, relative- (example), 393

path-separator, 48, 254

PATH-variable (operating-system), 60, 409

PDF (Portable Document Format), 369, 414

Peer, 353

peer, 353, 548

peer-based screen-components (concept), 548

peer-code, 598

peer-interface, 59, 251

peer-to-peer communication, 275, 352, 516

peer-to-peer connections, 273

peer-to-peer HT'TProtocol, 369

Permission (java.security), 453, 455, 459, 465, 476,
501

PermissionCollection (java.security), 455, 466

Permissions (java.security), 455, 469

Persistence, 238, 321

persistence and serialization of objects, 306, 318

paint()-method, triggerable- calls the paintComponent()- persistent database, non- (aggregation), 138, 233

method, 539, 559
paintComponent()-method (javax.swing.JApplet)
NONE, 615

paintComponent()-method (javax.swing.JComponent,

...), 128, 185, 527, 528, 531, 539, 540,
551, 559, 576, 595-597, 621
paintComponent()-method importing a reference
to native code, 185, 527
paintComponent()-method, triggerable-, 528, 531,
536, 539, 551, 559, 576, 595, 596

paintComponent()-method, triggerable- (fixes view),

540

PaintEvent (java.awt.event), 573, 576, 577, 595,
598

painting screen-components, 597

painting-methods, 595

Pairing-Quandary, 480

pairing-quandary, 483

Panel (java.awt), 559, 597

Panel heavyweight, 566

Panel, super-class of Applet, 251, 614, 615

Parallel-Server, 386

parameter of a method-declaration or -definition,
116

parent in containment-hierarchies, 543

parent of screen-component, 543

parent-class, 139

680 www.chartingJava.com

persistent path-name-setting (operating-system),
63

persistent storage (example), 298

persistent storage and communication over time-
intervals, 231

persistent storage and databases, 321

persistent storage and file-systems, 46, 238

persistent storage and hard-disk (hard-drive), 28,
30, 46, 238, 306, 311, 321, 433, 447, 510

persistent storage and packages, 249

persistent storage and policy-files, 455

persistent storage and random-access-files, 299

persistent storage and serialization of objects, 443

persistent storage and software-components, 311,
318

persistent storage and transient member-variables/fields,

148, 183

persistent storage of cryptographic keys (key-store),
488

persistent storage of registered security-providers,
487

persistent storage, non- (Random Access Meme-
ory), 28

persistent storage-device and class-loading, 433

physical connection, 340

Physical Layer (OSI), 354

pipe, 292

ISBN 3-00-009429-6

Index

681

piped streams, 292

PipedInputStream (java.io), 300

PipedOutputStream (java.io), 300

PipedReader (java.io), 300

PipedWriter (java.io), 300

Pixel (picture-element), 519

pixel’s partial transparency, 527

pixel, screen-, 523

pixel-coordinates, 536, 542

pixel-format, ARGB, 526

pixel-format, indirect, 526

PixelGrabber (java.awt.image), 610

pixelgrabbing, 535

Platform, 17, 44

platform, virtual-, 17, 36, 51, 55, 151, 333

plug-in (handler), 113, 325, 369

plus-operator (binary), 94

plus-operator (unary), 93

Point (java.awt), 555

point-to-point connection, 277, 343

Policy (java.security), 455, 457, 458, 460, 462,
465, 469

policy-file and public key, 459, 492

policy-file, conventions for the, 458

policytool (footnote), 458

polymorphism, 194

POP, 364

POP (Post Office Protocol), 371, 373

popup-menu, 511

PopupMenu (java.awt) top-level screen-component,
564

Port, 231

portability, 51

portability (and Java language), 333

portability (AWT and Swing), 548

portability and 100 Percent Java (footnote), 72

portability and multithreading, 203

portability and native methods, 118, 183

portability and pre-written packages, 249

portability and runtime environments, 55

portability of content-types, 265

portability-problem, 45, 47, 51

Portabiliy, 53

Portable Document Format (PDF), 369, 414

Portable Software, 53

portable source-code, 45

POSITIVE_INFINITY usage, 86

POSITIVE_INFINITY, constant of Float- and Double-
class, 257

Post Office Protocol (POP), 371, 373

post-condition loop/code, 90, 109

postEvent()-method (java.awt.Component,

java.awt.EventQueue, ...), 586, 590, 592

pow()-method (java.lang.Math), 95

power function (mathematical function), 95

pre-condition loop/code, 90, 109

pre-condition loop/code (example), 297

pre-deprecation-operator, 127

precedence, 101

preemptive thread-scheduling, 200, 203, 213

ISBN 3-00-009429-6

www.chartingJava.com

preparelmage()-method (java.awt.Component), 232,
529, 596

Presentation Layer (OSI), 354

primitive-type, 83, 87, 142, 191

primitive-type and atomic operations, 214

primitive-type and comparison-operator (==), 162

primitive-type, type-casting of-, 100

println()-method (java.lang.System.out), 37, 71,
254, 637

println()-method (java.lang.System.out) (footnote),
72

printStackTrace()-method (java.lang. Throwable),
282

PrintStream (java.io), 253

PrintWriter (java.io), 310, 413

priority-based thread-scheduling, 200, 202, 213,
641

private access, 176

private class-member, 148

private constructor, 150, 181, 182, 382, 417

private constructor and singleton, 160

private key (for decrypting), 481

private key (for signing), 482, 488, 492

private key (for signing), an example, 490

private key format (PCKSS8), 481

private key in key-store, 488

private key producing a one-way-function, 480

private modifier, 176, 181

PrivateKey (java.security), 493

PrivilegedAction interface (java.security), 470,471

PrivilegedExceptionAction (java.security), 471

problem tutoring, 512

Process (java.lang), 56, 250, 255

process and applet, 613

process and thread, 230, 254, 273, 293, 321

process...()-method, triggerable-, 287

processEvent()-method, triggerable-, 591, 592

processing-graph, 520

Processor, 28

processor’s address-space, 28, 291, 522, 535

processor-model, 39

profiling, 629

Program, 17, 35

program, 160

program and applet, 67

program and application, 38

program and compiler, 39

program and interpreter, 39

program and operating-system, 43, 44

program and runtime-environment, 55

program, Java-, 51

program, native-, 53

programmer, application-, 27

programmer, infrastructure-, 27

programmer, system-, 27

programmer, utility-, 27

Programming, 38

programming language, non-procedural-, 40

Programming, Application-, 38

programming, distributed-, 419, 423

Programming, Infrastructure-, 38

681

682

Index

programming, infrastructure- (security), 455, 486,

497
programming, infrastructure- (switchboard exam-
ple), 633

programming, literate-, 323

programming, symbol-oriented-, 40, 71

programming, visual- (with software-components),
311, 313

programming-language, JavaScript-, 338

programming-language, procedural-, 40

Properties (java.util), 254, 258, 444, 486

properties and variables, 312

property (of a software-component), 312

property expansion with text-files, 458, 459

property, bound- (of software-component), 315

property, constrained- (of software-component),
315

Property-Expansion, 458

PropertyChangeEvent (java.beans), 314, 331, 578,
603

PropertyChangeListener (java.beans), 314, 319,
331, 578

PropertyChangeSupport (java.beans), 314, 319,
331

PropertyPermission (java.util), 469

protected access, 177

protected constructor, 151, 181

protected modifier, 176, 180

Protection (security-related), 449

protection-domain, 454, 466, 469, 471

ProtectionDomain (java.security), 453, 454, 458,
465, 468, 469, 501, 629

Protocol, 274, 275

protocol, 122, 190, 231, 279, 289, 347

Protocol (message-model), 275

protocol and type, 347

protocol, application-, 348, 367, 378

protocol, application-, and servlet, 405

protocol, application-, and TCPport-number, 363

protocol, application-, and URL, 373

protocol, application-, and URL-class, 388

Protocol, Connection-Oriented-, 350

protocol, connection-oriented-, 275, 351

protocol, connectionless-, 350

protocol, DNS, 382

protocol, open-, 347

Protocol, Packet-Oriented-, 349

protocol, packet-oriented-, 275, 351

protocol, service- (or application-), 378

protocol, signaling-, 342

protocol, state-bound-, 351

protocol, stateless-, 351

protocol, transport-, 342, 348

protocol, virtual-network-, 348

Protocol-Handler, 349

protocol-model, 274

protocol-stack, 348, 512

protocols, layer-model of, 348

Provider (java.security), 486, 499

Provider Infrastructure, 487

provider-infrastructure, 485

682 www.chartingJava.com

Pseudo-code, 39

public access, 177

public class extended over different packages, 438

public class has to be in class of same name, 146,
241, 242, 245, 246

public constructor, 180

public key (distribution problem), 481, 483

public key (for authentication), 482

public key (for encrypting), 481

public key and identity of owner, 481

public key and policy-file, 459, 492

public key producing a one-way-function, 480

public keys in key-stores, stored as certificates,
488

public modifier, 176, 180

public-key-file (example), 493

PublicKey (java.security), 493, 494

pull-model, 274, 520

push-model, 520, 574

QoS (Quality of Service), 345, 351, 354, 423, 444

QoS (Quality of Service) concept, 447

qualification-operator, 182

quality of a cryptographic algorithm, 479

Quality of Service (QoS), 339, 345, 351, 354, 423,
444

Quality of Service (QoS) concept, 447

queue, event-, 586

race-condition (thread-specific problem), 225

railroad-diagram, 76

RAM (Random Access Memory), 28, 73, 76

RAM-address, 73, 143

Random (java.util), 257

Random Access Memory (RAM), 28, 73, 76

random()-method (java.lang.Math), 106, 112, 219,

229, 257, 531

random-access, 233, 291

random-access-file, 299, 321

RandomAccessFile (java.io), 299, 321

rasterization, 535

read()-method (java.io.FilterInputStream,
java.io.FilterReader), 302
java.io.FilterReader) triggerable, 306

read()-method (java.io.InputStream, java.io.Reader),

127, 232, 291, 295

read()-method (java.io.InputStream, java.io.Reader)
abstract, 296

Reader (java.io), 304, 310

Reader (java.io) abstract, 296

readLine()-method (java.io.BufferedReader), 300,
387, 390, 394, 456

readObject()-method (java.io.ObjectInputStream),
308-310, 318

real-life problems, 512

Rectangle (java.awt), 555, 607

Recursion, 125

recursive data-structures (not treated), 233

redundant information, 522

reference, passing arguments by-reference, 120,
256

Reference-Type, 143

ISBN 3-00-009429-6

Index

683

reference-type, 143, 191

reference-type and atomic operation, 214

reference-type and equality operator (==), 162

reference-type, type-casting of-, 169

reference-type, variable of-, 143

references, concept of weak-, 445

reflection (Java language), 252, 442, 629

reflection (software-/screen-components), 542

reflection (software-components), 251, 318, 319

registry (message-model), 272

Relative Path-Name, 48

relative path-name (example), 393

remainder-operator, 93

Remote interface (java.rmi), 189, 417

Remote Method Invocation (RMI), 19, 64, 251,
273, 310, 338, 373

Remote Method Invocation (RMI), introduction,
416

rendering an image, 519

rendering an image (off-screen), 535, 542, 621

rendering an image (on-screen), 535

rendering as coding-transformation, 535

rendering of images, 587

rendering-method, 536

repaint()-method (java.awt.Component), 128, 405,

596-598, 601, 602

repaint()-method (java.awt.Component), example,

602

RepaintManager (javax.swing), 560, 599

repository (message-model), 272

resolution in dpi (dots per inch), 536, 537

Resource, 44

ResourceBundle (java.util), 260, 263

return-keyword, 118

return-statement, 118

reusability (of software-components), 313

RGB-model, 523

right-associative, 101

RLE-compression (Run Length Encoding), 522

RMI, 414

RMI (Remote Method Invocation), 19, 64, 251,
273, 310, 338, 373

RMI (Remote Method Invocation), introduction,
416

RMI layer-model, 417

RMI-compiler-tool: rmic, 415

RMI-registry-tool: rmiregistry, 415

rmic, RMI-compiler-tool, 415

rmiregistry, RMI-registry-tool, 415

RootPaneContainer (javax.swing), 563, 566, 615,
618

round-robin-scheme of scheduling threads of same

priority, 202
router, 290
rt.jar, 54, 247, 249, 389
rt.jar (loading), 434
rt.jar, peeking inside-, 243, 244

run()-method (java.lang.Runnable), 160, 198, 204,

205, 207-210, 255, 256, 258, 329, 386,
401, 589, 641
run()-method (java.lang.Runnable) abstract, 189

ISBN 3-00-009429-6

run-time typed language, 75

Runnable interface (java.lang), 189, 209, 228, 232,
255, 256, 258, 386, 401, 589

Runnable interface (java.lang) instantiated anony-
mously, 208

Runnable interface (java.lang), introduction, 205

Runnable thread, 200, 211

Running thread, 211

Runtime (java.lang), 56, 250, 254, 258, 402, 432,
445, 641

Runtime Environment, 55

runtime-representation of a class, 54, 255, 433,
441, 443, 629

Runtime.exit()-method (java.lang), 254

Runtime.gc()-method (java.lang), 254

RuntimeException (java.lang), 279, 281

RuntimePermission (java.lang), 468, 472

Safe Channel, 483

safe channel, 449, 479, 481, 483

Sandbox, 463

sandbox, 68, 333, 398, 406, 432, 475, 613

scheduling of events, 572, 574

scheduling of threads, 53, 200, 213, 216, 228, 230

scheduling threads in Java, 203

SCOPE, 122

scope, 430

scope and access-area, 172

scope and access-area in an Hierarchical File Sys-
tem (HFS), 172

scope and name-space, 123

scope of identifier, 122, 171

scope of local variable, 122

screen-component, 331, 399, 509, 510, 519

Screen-Component (concept), 540

screen-component and its GUI-related states, 509,
598

screen-component as a painting-surface, 538

screen-component as container, 542

screen-component on focus, 542, 577

screen-component, heavyweight-, 559, 562, 564,

566, 595, 597
screen-component, heavyweight- (concept), 353,
548

screen-component, lightweight-, 559, 565, 566

screen-component, lightweight- (concept), 353, 549

screen-component, modal-, 540, 542

screen-component, visible, showing, nonvisible,
598

screen-pixel, 523

Scrollbar (java.awt), 548, 559

ScrollPane (java.awt), 559

ScrollPaneLayout (javax.swing), 543

secure class-loader, 454, 458, 469, 471

secure stream, 501

SecureClassLoader (java.security), 465, 469, 629

Security (java.security), 485-487, 499

security-manager, 462

security-manager (and access-control-mechanism),
454, 455

security-manager (and applets), 475

security-manager (and class-loading), 440

www.chartingJava.com 683

684

Index

security-manager (autistic and free), 255

security-manager (its various uses), 475

security-manager (run Java code with and with-
out a-), 460, 465

security-manager and (security-)sandbox, 463

security-related-applications, 488

Security-Sandbox, 463

security-sandbox, 68, 475

SecurityException (java.lang), 281, 463

SecurityManager (java.lang), 250, 254, 255, 427,
440, 453, 456, 476

SecurityManager (java.lang) core, 462

SecurityPermission (java.security) in footnote, 465

segmentation of packets in networks, 351

self-signed certificate, 484

semantic event, 578

semantic manipulation, 35, 73

semi-transparency, 550

separator, folder-/directory-/file-, 46, 254

separator, folder-/directory-/file- (in packaging),
242

separator, folder-/directory-/file- (policy-files), 458,
462

separator, folder-/directory-/file- (URL), 364, 388

separator, line-, 254, 304

separator, path-, 48, 254

separators, 641

separators, table of-, 48

sequence of constructor-calls, 152

Sequential-Server, 386

sercret-key-cryptography, 478

Serializable interface (java.io), 189, 307, 312, 318,
563

Serialization, 307

Server, 276

Server, One-Time-, 386

Server, Parallel-, 386

Server, Sequential-, 386

server-side computing, 406

ServerSocket (java.net), 273, 385, 421

service()-method (javax.servlet.Servlet, ...) abstract,
128, 407, 408, 411

service()-method, triggerable-, 407

service- (or application-) protocol, 378

Servlet, 406

servlet introspection, 411

servlet’s triggerable method, 407

servlet-container (=servlet-sandbox), 406, 407, 409,
430

servlets and web-applications, 414

Session, 277

Session Layer (OSI), 354

set...()-method, 312, 313, 318

setContentHandlerFactory()-method (java.net.

URLConnection), 190, 393, 394

setDaemon()-method (java.lang.Thread), 224, 232

setName()-method (java.lang.Thread), 212

setPriority()-method (java.lang.Thread), 212, 224,
232

setSecurityManager()-method (java.lang.System),
254, 255, 463-465

684 www.chartingJava.com

setURLStreamHandlerFactory()-method (java.net.URL),

190, 391, 394

setVisible()-method (java.awt.Component), 528, 552,
595, 597, 598

shadowing a static variable, 168

shadowing variables, 123, 126, 167, 168

Shallow Cloning, 191

shallow equal object-graphs, 162, 192

shift operators, 95

shift-operator (example), 533

Short (java.lang), 169, 181, 256

Short (java.lang), un/wrapping, 256

short (primitive-type), 85, 169

short (primitive-type), length of an array, 234

short (primitive-type), un/wrapping, 256

Showing (state of screen-component), 598

showing (state of screen-component), 541, 598

signaling-protocol, 342

Signature (java.security), 485, 492, 494

signature, digital-, 483

signature, digital- and certification, 484

Signature, method-, 117, 124

signature, method- (in abstract methods), 184

signature, method- (in interfaces), 187

signature, method- (in overriding methods), 168

signature-file (example), 493

signed class = signed class-file, 494

signed data (example), 493

signed data and authentification (concept), 482

signed data and policy-files, 459, 492

signed data and trust, 478

signed data in class-loading, 469

signed data-files, by user, 488

signed data-files, byte-code, classes, objects, 494

signed JAR-file, 491

SignedObject (java.security), 494

signing data by programmer, 492

signing public keys (certification), 483

signing-tool: jarsigner, 489, 492

Simple Mail Transfer Protocol (SMTP), 371, 373,
389

Singleton, 160

singleton, 463

skeleton-class (RMI), 416

sleep()-method (java.lang.Thread), 204, 211, 212,
223, 232

SMTP, 364

SMTP (Simple Mail Transfer Protocol), 371, 373,
389

Socket, 273

Socket (java.net), 273, 382, 385

socket, TCP-, 273, 383, 385

socket, TCP/UDP-, 364

SocketPermission (java.net), 459

Software, 36

Software, Native-, 53

Software, Portable-, 53

software-component (concept), 311

software-components: introspection, 311

source of message-model, 271

Source-Code, 38

ISBN 3-00-009429-6

Index

685

source-code, 37

source-code written with a text-editor, 53, 54, 57,
62, 63, 65, 323

source-code, portable-, 45

source-code, programmer comment, 37, 71, 323

space, address-, 28

space, address-, and port, 231, 271, 337

space, address-, of a processor, 291, 522, 535

spawn a thread, 206

SQL (Structured Query Language), 20, 40, 252,
321

sqrt()-method (java.lang.Math), 94

square root (mathematical function), 94

stack (aggregate of protocols), 348, 512

stack (aggregate), 138, 233, 292

stack (aggregate, processor-state), 217, 271, 281

stack of cards, 202

stack, protocol-, 348

StackOverflowError (java.lang), 281

standalone code (=program), 160

start()-method (java.applet.Applet), 205, 398, 400,
618, 641

start()-method (java.lang.Thread), 204, 206—209,
211, 212, 232, 386, 401

start()-method, triggerable-, 398

starvation (thread-specific problem), 224

state and variable (in object-orientation), 133

state of an object, 131, 161

state-bound protocol, 351

stateless protocol, 351

statement, 103

statement, break-, 110

statement, continue-, 110

statement, do- (looping), 109

statement, empty-, 103

Statement, Expression and Control Structure (con-
cept), 89

statement, for- (looping), 109

statement, if- (branching), 105

statement, labeled-, 111

statement, return-, 118

statement, switch- (branching), 106

statement, synchronized- (multithreading), 216

statement, throw- (messaging with Throwable-
objects), 279

statement, try- (messaging with Throwable-objects),
282

statement, unreachable-, 106

statement, while- (looping), 108

states of a screen-component, conceptual-, 509,
598

static blank-final, 182

static class-member, 140, 148, 154

static class-members remain unserialized, 309

static factory-method, 151

static factory-method (footnote), 382

static member-class, 158, 182

static method, 138, 154, 182

static method, overriding a-, 168

static modifier, 182

static synchonized methods lock their class, 214

ISBN 3-00-009429-6

static variable (class-variable), 138, 148, 154, 182

static variable in an abstract class, 184

static variable, unshadowing a-, 173

static-initializer, 152, 441, 641

static-initializer and static blank-finals, 182

static-initializer, not a class-member, 148, 166

static-keyword and class-member, 154

statically-typed language, 75

stop()-method (java.applet.Applet), 205, 398—400,
618, 641

stop()-method, triggerable-, 398

Stream, 273

stream, 19, 233

Stream (Java), 295

stream (message-model), 272

stream, content-, 389, 394

stream, filter-, 292

stream, I/0-, 292

stream, input-, 296

stream, output-, 295

stream, secure-, 501

stream, wrapper-, 292

stream-example (footnote), 275

stream-model, 272

stream-objects and -classes, 295

streams and variables, 292

streams in Java, 291

streams to aggregates, 237

streams, piped-, 292

strength of an cryptographic algorithm, 479

strictfp, 118

strictfp method, 183

strictfp modifier (for classes and methods), 183

String (java.lang), 81, 194, 250, 257, 520, 642

String (java.lang) casting, 170

String (java.lang) comparing, 162

String (java.lang) exceptionality, 77, 145

string-concatenation, 95

string-concatenation-operator, 95

string-literal, 81, 257

StringBuffer (java.lang), 120, 250, 257, 642

StringBufferInputStream (java.io), 237

StringReader (java.io), 291, 310

StringTokenizer (java.util), 233, 237, 301, 386

StringWriter (java.io), 310

Structured Query Language (SQL), 20, 40, 252,
321

stub-class (RMI), 416

sub-class (concept), 135

sub-classes with methods overriding methods in
super-classes, 168

sub-network, 343

subdomain (DNS), 360

subnet-mask, 358, 378

subscriber event-model, 276

super()-constructor, 149

super()-constructor (class-extension), 166

super()-constructor, example, 304

super-class, 164

super-class (concept), 135

www.chartingJava.com 685

686

Index

super-class, class without a- (java.lang.Object),
164

super-classes and casting, 169, 253

super-classes and class-loading, 441

super-classes containing methods overidden by
methods of sub-classes, 168

super-classes in graphical representation, 562

super-classes, multiple- (concept), 136, 139, 187

super-interfaces and implements-keyword, 188

super-keyword, 153, 173, 593

super-keyword for un-overriding from OUTSIDE
a class, 175, 192, 286

super-keyword for un-overriding from WITHIN a
class, 174

super-keyword undefined in static methods, 182

super-keyword used for unshadowing, 173

Swing, 505

Swing (basics), 548

Swing as API, 52

Swing versus AWT (Abstract Window Toolkit),
520, 548

Swing, applets, 613

Swing, class-hierarchies, 564

Swing, desktop, 610

Swing, image drawing, 519, 595

Swing, screen-components, 551

SwingUetilities (javax.swing), 538, 587-589

switch-statement (branching), 106

switch-statement (branching), example, 401

switchboard (message-model), 337

switchboard (OSI layer-model), 354

switchboard and pairing-quandary, 480

Switchboard routes messages (message-model),
272

switchboard, custom-written, 633

switchboard-mechanism, advanced AWT-, 594

switchboard-mechanism, AWT-, 571

switchboarding, java.beans, 314

switchboarding, Observable-Observer-, 285

switchboarding, try-catch clause, 282

switchboarding-structures, 276

switching-mechanism, non-localized-, 283

symbol-oriented-programming, 40, 71

symmetric-key-cryptography, 478

synchonized block, 216

synchronization, machine-, 216

synchronized instance-methods lock their object,
214

synchronized method, 183

synchronized modifier (for methods), 183

synchronized-statement (multithreading), 216

Syntax Diagrams, 655

syntax-diagram, 76

System (java.lang), 56, 250, 253, 254, 258, 402,
505

System (java.lang) stream, 274

system-programmer, 27

System-Property, 259

system-property and property-expansion, 458

System.arraycopy()-method (java.lang), 236, 630

System.currentTimeMillis()-method (java.lang), 261

686 www.chartingJava.com

System.exit()-method (java.lang), 254, 432, 581,
651

System.exit()-method (java.lang), example, 226,
382

System.gc()-method (java.lang), 153, 223, 254, 445,
598

System.getProperties()-method (java.lang), 258

System.in (java.lang) stream, 297

System.out (java.lang) stream, 297

System.out.println()-method (java.lang), 71, 254,
637

System.out.println()-method (java.lang) (footnote),
72

System.setSecurityManager()-method (java.lang),
255, 463

SystemColor (java.awt), 527

TCP (Transmission Control Protocol), 363, 378,
385

TCP-port, 643

TCP-port 80 (HTTP), 371

TCP-port in URL, 374

TCP-socket, 273, 383, 385

TCP/UDP-port, 363

TCP/UDP-socket, 364

technology-specific network-protocol, 348

TELNET, 364, 371, 372

terminal-based user interface, 507

terminal-window, 44, 54, 55, 64

terminal-window (and appletviewer-command), 396,
431, 613, 641

terminal-window (and CTRL-C-command), 432

terminal-window (and jar-command), 326, 645

terminal-window (and java-command with jar-option),

327

terminal-window (and java-command with security-
option), 462

terminal-window (and java-command with String-
arguments), 236

terminal-window (and java-command with verbose-
option), 250, 434

terminal-window (and java-command with version-
option), 59, 65, 250

terminal-window (and java-command), 51, 65, 431,
505, 619

terminal-window (and java-command, triggers main()-

method), 116, 127, 142
terminal-window (and javac-command), 65, 72,
431
terminal-window (and javadoc-command), 324
terminal-window (and javap-command), 642
terminal-window (and keytool-command), 489
terminal-window (and policytool-command), 458
terminal-window (and RMI-related commands),
418
terminal-window (and servlet-related commands),
407
terminal-window (and Uniform Resource Locator
(URL)), 373
terminal-window (as single user interface), 508
terminal-window (its current directory), 48
terminal-window (Linux operating-system), 62

ISBN 3-00-009429-6

Index

687

terminal-window (Mac OS X), 61

terminal-window (multiple- for multiple JREs),
52, 231

terminal-window (typical java-commands), 37

terminal-window (Windows operating-system), 63

text-based document format, 414

text-based user interface, 507

text-editor for editing security- and policy-files,
453, 457, 458, 496

text-editor for writing source-code, 53, 54, 57, 62,
63, 65, 323

text-editors and text-model, 543

this()-constructor, 167

this()-constructor, example, 568

this-keyword, 173, 207, 217, 223, 580, 596, 630

this-keyword undefined in static methods, 182

this-keyword used for unshadowing, 172

this-keyword with little sense, 227

Thread (java.lang), 206, 210, 216, 232, 256, 329

Thread (java.lang) cast, 442

thread communication, with objects, 225

thread, Blocked-, 199, 211

thread, Daemon-, 223

thread, daemon-, 215, 432, 586

thread, Event-Dispatch-, 585

thread, event-dispatch-, 205, 228

thread, event-dispatch-, and painting-methods,
595

thread, event-dispatch-, running code on the-, 589

thread, finalize-, 228

thread, garbage-collection-, 223, 228, 444

thread, Inactive (=Interrupted), 200

thread, Initialized-, 211

thread, Interrupted- (= Inactive), 200

thread, main- or main()-, 205, 207, 228, 232

thread, method-call history of a-, 470

thread, Runnable-, 200, 211

thread, Running-, 211

thread, spawn a -, 206

thread-context-switch, 230

thread-scheduling, 53, 200, 213, 216, 228, 230,
641

thread-scheduling in Java, 203

thread-scheduling, preemptive, 200, 203, 213

thread-scheduling, priority-based-, 200, 202, 213,
641

thread-scheduling: round-robin-scheme, 202

thread-scheduling: time-slicing, 201, 203, 213,
641

thread-specific problem (deadlock), 226

thread-specific problem (dining humans), 215

thread-specific problem (lifelock), 226

thread-specific problem (race-condition), 225

thread-specific problem (starvation), 224

thread-states, 210

ThreadGroup (java.lang), 250, 256

threads and local variables, 217

three-tier-model, 352, 406

three-tiered communication infrastructure, 277,
352, 406, 414

throw-statement, 279, 330

ISBN 3-00-009429-6

throw-statement (messaging with Throwable-objects),

279

throw-statement (security-exception), 463

Throwable (java.lang), 256, 280, 284, 329

Throwable (java.lang) hierarchy, 281

throws-keyword and checked exceptions, 281, 330

throws-keyword in constructor-declaration, 150

throws-keyword in method-declaration, 117, 280

tiered communication infrastructure, three-, 277,
352, 406, 414

time-slicing, a form of thread-scheduling, 201, 203,
213, 641

Timer (javax.swing), 576, 603

toCharArray()-method (java.lang.String), 291, 495

tool, 54

tool tutoring, 512

tool(Archiving): jar, 325

tool(archiving): jar, 54, 242, 243, 250, 489, 492

tool(Compiler): javac, 72, 431

tool(compiler): javac, 60, 246, 333, 397, 407, 473

tool(disassembler): javap, 250, 642

tool(documentation): javadoc, 324

tool(Java Runtime Environment Creation): java,
51, 431

tool(Java Runtime Environment creation): java,
54, 55, 64, 65, 72, 231, 236, 246, 434,
435, 451, 457, 461, 465, 473, 505

tool(keymanagement): keytool, 489, 492

tool(RMI-compiler): rmic, 415

tool(RMI-registry): rmiregistry, 415

tool, application as tool for solving real-life-problems,
507

tool, Bean-Box, 313

tool, builder- (for software-components), 311

tool: jarsigner, 489, 492

toolbar (tool-bar), 511

Toolkit (java.awt), 254, 332, 529, 556, 586, 603,
607

Toolkit typed reference to native-code, 185

Toolkit typed reference to native-code, getting a-,
528, 551, 555, 579, 596

Tooltip, 601

tooltip, 559, 599

top-level window, 577

top-level window, concept of-, 509

top-level windows and heavyweights, 550, 565

top-level-class, 157

top-level-domains, country-code- (DNS), 361

top-level-domains, generic- (DNS), 361

topology of a network, 340

toString()-method (java.lang.Object), 161, 165, 252,
256

toString()-method (java.lang.StringBuffer), 257

toString()-method (java.lang. Throwable), 282

toString()-method (java.util. EventObject), 288

totalMemory()-method (java.lang.Runtime), 254,
258, 445

toUppercase()-method (java.lang.String), 102

transformation, coding-, 35, 520, 534, 535

transformation, content-, 35, 520

transient field (non-serializable), 183, 309

www.chartingJava.com 687

688

Index

transient modifier (for fields), 183, 309

Transmission Control Protocol (TCP), 363, 378,
385

transparency, 139, 377, 526, 550, 556

transparency close to encapsulation, 139, 367, 377,
382

transparency, partial, 527

Transparent, 367

Transport Layer (OSI), 354

transport-protocol, 342, 348

tree-structure, 233, 543

tree-structure of a class-hierarchy, 135

tree-structure of a Hierarchical File System, 46,
326

tree-structure of texts, 516

triggerable check...()-methods, 462

triggerable destroy()-method, 398

triggerable finalize()-method, 127, 153

triggerable imageUpdate()-method, 563

triggerable init()-method, 398

triggerable main()-method, 72, 127, 185

Triggerable Method, 128

triggerable method of servlets, 407

triggerable methods of applets, 397, 614, 618

triggerable paint()-method, 397, 536, 552, 576,
595, 597

triggerable paint()-method (fixes view), 540

triggerable paint()-method calls the paintComponent()-

method, 539, 559

triggerable paintComponent()-method, 528, 531,
536, 539, 551, 559, 576, 595, 596

triggerable paintComponent()-method (fixes view),
540

triggerable process...()-method, 287

triggerable processEvent()-method, 591, 592

triggerable read()-method, 306

triggerable service()-method, 407

triggerable start()-method, 398

triggerable stop()-method, 398

triggerable validate()-method, 598

trim()-method (java.lang.String), 257, 387, 394

TRUST, 478

try-catch clause, 113, 279

try-catch clause (branching), 112

try-catch clause, switchboarding, 282

try-statement (messaging with Throwable-objects),
282

try-statement and break-statement, 282

tunneling (data in network), 346

tutoring, problem-, 512

tutoring, tool-, 512

Type, 73

type, 35, 40, 71, 74, 75, 521

type and protocol, 347

type safety, 450

type, array-, 143, 234

type, class-, 143, 146

type, content-, 368, 405

type, interface-, 143, 185

type, local-, 124

type, MIME-, 368, 389, 393

688 www.chartingJava.com

type, primitive-, 83, 87, 142, 191

type, programmer-defined-, 131, 140, 142

Type, Reference-, 143

type, reference-, 143, 191

type-cast potential, testing-, 253

type-cast, implicit- (example), 544, 580

Type-Casting, 88

type-casting, 257, 450

type-casting identifiers to an abstract class-type,
552

type-casting identifiers to interface-type, 194, 404

type-casting of primitive-types, 100

type-casting of reference-type, 169

type-casting, explicit-, 100

type-casting, implicit-, 86, 87, 100, 106, 169, 194,
253

typed, dynamically-typed language, 75

typed, run-time typed language, 75

typed, statically-typed language, 75

UCS (Unified Coding Standard), 265

UDP (User Datagram Protocol), 354, 363, 378,
384

UDP (User Datagram Protocol) and RMI, 415

un-overriding from OUTSIDE a class with super-
keyword, 175, 192, 286

un-overriding from WITHIN a class with super-
keyword, 174

underflow/overflow warning with floating-point op-
erations: NONE, 86

underflow/overflow warning with integers: NONE,
86

unicast as one-way-flow, 343

unicast event-messaging, 287, 289, 633

Unicode Transformation Format (UTF), 20, 265,
308

Unicode-format, 34, 265

Unified Coding Standard (UCS), 265

Uniform Resource IDENTIFIER (URI), 365

Uniform Resource Locator (URL), 365

Uniform Resource Name (URN), 365

UnknownError (java.lang), 281

unnamed package, 241

unreachable statement, 106

UnresolvedPermission (java.security) in footnote,
467

unshadowing a static variable, 173

unshadowing an instance-variable, 172

update()-method (java.awt.Component), 5652, 595

update()-method (java.security.Signature), 493

update()-method (java.util.Observer), 285, 286, 330

update()-method (java.util.Observer) abstract, 285

Uploading files (client TO server), 371

uploading files (client TO server), 372, 374

upper-case letter, 34, 102

upper-case letter, in integer-literal of type long,
78

upper-case letters in jar-file manifest, 491

upper-case letters, keyboard signals for-, 572

URI (Uniform Resource IDENTIFIER), 365

URL (java.net), 388, 390-392, 405, 439

URL (Uniform Resource Locator), 365

ISBN 3-00-009429-6

Index

689

URL-encoding, 375

URL-Rewriting, 413

URLClassLoader (java.net), 438, 469, 629

URLConnection (java.net), 389, 392

URLStreamHandler (java.net), 391, 392

URLStreamHandlerFactory (java.net), 391

URN (Uniform Resource Name), 365

user (key-management and signing files), 488

user (using a security-manager), 465

user and applet-configuration, 475

user and jar-archive, 326

user and means of interaction, 56

user and operating-system, 43

user and security, 448, 453, 457

user and tools, 54

user calling Java’s main()-method, 127

User Datagram Protocol (UDP), 354, 363, 378,
384

User Datagram Protocol (UDP) and RMI, 415

user interface, 507

user interface, terminal-based-, 507

user interface, text-based-, 507

user interfaces, 507

user, cannot change a security-manager, 463

user, selecting policies, 460

users and applications, 38

UTF (Unicode Transformation Format), 20, 265,
308

utility-programmer, 27

validate()-method, triggerable-, 598

value, passing arguments by-value, 120, 225, 256

valueOf()-method (java.lang.Boolean, Byte, ...), 256

valueOf()-method (java.lang.Integer), 642

valueOf()-method (java.lang.String), 257

Variable, 40, 74

variable and member, 148

variable and object and instance, 149

variable and state (in object-orientation), 133

variable of primitive-type, casting of-, 88

variable of primitive-type, copying/cloning, 83

variable of primitive-type, type-casting of-, 100

variable of primitive-type, wrapped-, 256

variable of reference-type, 143

variable of reference-type, casting of-, 169

variable of reference-type, copying/cloning, 144

variable of String-class, 145

variable or field, 148

variable, array-, 234

variable, assignment by-value, 83

variable, class- (static variable), 138, 148, 154,
182

variable, CLASSPATH- (operating-system), 61,
66, 243, 254, 436, 451, 629

variable, data-equality with primitive-type, 162

variable, dynamically typed-, 75

variable, field-, 155

variable, final local-, 122

variable, final- (quasi-constant), 182

variable, instance-, 139, 148, 182

Variable, Local-, 121

variable, local- (and field), 148

ISBN 3-00-009429-6

variable, member-, 148

variable, model- (MVC-concept), 516

variable, non-local-, 123

variable, non-local- (definition), 117

variable, overridden?, 139

variable, passed by-reference to a method, 120

variable, passed by-value to a method, 120

variable, PATH- (operating-system), 60, 409

variable, pointer-equality with reference-type, 162

variable, shadowing a static-, 168

variable, static- (class-variable), 138, 148, 154,
182

variable, static-, in an abstract class, 184

variable, statically typed-, 75

variable-declaration, 147

variable-declaration, local-, 122

Variable-Name, 40, 74

variable-name, 73, 83, 119

variable-name, ambiguous-, 187, 239

variable-name, representing a reference, 145

variables and properties, 312

variables and streams, 292

variables, implicitly final in interfaces, 186

variables, shadowing-, 123, 126, 167, 168

Vector (java.util), 238, 445

Vector (java.util), as buffer, 586

Vector (java.util), as package-member, 250

Vector (java.util), as type of container-object, 138,
236

Vector (java.util), example, 219, 634

Vector (java.util), example, as buffer, 228

verifier, byte-code-, 281, 441, 450, 451

VetoableChangeListener (java.beans), 316, 331

VetoableChangeSupport (java.beans), 316, 331

View and MVC, 515

virtual channel (in network), 346

virtual class (non-instantiable class), 138

Virtual Machine, 40

virtual machine, 39

virtual network, 343, 357

virtual platform, 17, 36, 51, 55, 151, 333

virtual-network-protocol, 348

VirtualMachineError (java.lang), 281, 444, 445

Visible (state of screen-component), 598

visible (state of screen-component), 541, 598

visual programming (with software-components),
311, 313

Void (java.lang), 117, 257

volatile field (uncached), 148, 183

volatile modifier (for fields), 183

wait()-method (java.lang.Object), 211, 213, 216,
221, 223, 232, 252

waitFor()-method (java.lang.Process), 255

weak references, concept of-, 445

Web-Application, 406

web-applications and servlets, 414

web-server (see server), 407

while-statement (a pre-post-condition loop), 110

while-statement (usually a post-condition loop),
108

www.chartingJava.com 689

690

Index

while-statement, labeled- (a pre-post-condition loop),
111

WHOIS, 362, 364, 382

widening cast, 169

widening cast and polymorphism, 195

widening of the identifier’s type, 170, 638

Window (java.awt), 562, 598

Window (java.awt) heavyweight, 565

Window (java.awt) top-level screen-component, 564,
598

Window as source of event-objects, 578

window of an applet, 400

window of an applet (security-mark), 475

window or frame (as modal screen-component),
540

window or frame (GUI container), 512, 573

window or frame (GUI-context), 44, 263, 509

window or frame (size-change), 573

window, activated-, 577

window, concept of activated-, 509

window, concept of top-level-, 509

window, dialog-, 540

window, terminal-, 44, 54, 55, 64

window, terminal- (and appletviewer-command),
396, 431, 613, 641

window, terminal- (and CTRL-C-command), 432

window, terminal- (and jar-command), 326, 645

window, terminal- (and java-command with jar-
option), 327

window, terminal- (and java-command with security-
option), 462

window, terminal- (and java-command with String-
arguments), 236

window, terminal- (and java-command with verbose-
option), 250, 434

window, terminal- (and java-command with version-
option), 59, 65, 250

window, terminal- (and java-command), 51, 65,
431, 505, 619

window, terminal- (and java-command, triggers
main()-method), 116, 127, 142

window, terminal- (and javac-command), 65, 72,
431

window, terminal- (and javadoc-command), 324

window, terminal- (and javap-command), 642

window, terminal- (and keytool-command), 489

window, terminal- (and policytool-command), 458

window, terminal- (and RMI-related commands),
418

window, terminal- (and servlet-related commands),
407

window, terminal- (and Uniform Resource Loca-
tor (URL)), 373

window, terminal- (as single user interface), 508

window, terminal- (its current directory), 48

window, terminal- (Linux operating-system), 62

window, terminal- (Mac OS X), 61

window, terminal- (multiple- for multiple JREs),
52, 231

window, terminal- (typical java-commands), 37

690 www.chartingJava.com

window, terminal- (Windows operating-system),
63

window- or frame-states (concept), 509

window-closing-box, 581

window-object, 263

window-object, anonymous-, 159

WindowEvent (java.awt.event), 573, 575, 578

WindowListener (java.awt.event), 578, 581

World Wide Web (WWW), 372

wrapped variable of primitive-type, 256

Wrapper, 169

wrapper-class, 169, 171

wrapper-class (Float, Double), 86, 92

wrapper-class (GuardedObject), 474

wrapper-class (Integer), 85

wrapper-class (Number), 256

wrapper-class (Void), 257

wrapper-stream, 292

wrapping and unwrapping, 256

write()-method (java.io.FilterOutputStream,

java.io.FilterWriter), 302

write()-method (java.io.OutputStream, java.io.Writer),
127, 295

write()-method (java.io.OutputStream, java.io.Writer)
abstract, 296

writeObject()-method (custom-defined), 318

writeObject()-method (java.io.ObjectOutputStream),
308, 309

Writer (java.io), 304, 310

Writer (java.io) abstract, 296

www (as subdomain), 360, 374

WWW (World Wide Web), 372

XML (eXtensible Markup Language), 410, 414
XOR-operator (", eXclusive OR), 84

yield()-method (java.lang.Thread), 204, 211-213,
232

ZIP, 326

ZIP-compression, 326, 522
ZIP-file, 240

ZIP-file (and applet), 403, 614
ZIP-file (and directory-path), 247
ZIP-file (in Java API), 250
ZipFile (java.util.zip), 250

ISBN 3-00-009429-6

