Structuring Code and Data: Object-Orientation

Structuring Code and Data: Object-Orientation — Methods and, if those methods properly encapsulate
their functionality, the associated Application Programming Interfaces (APIs) are useful for structuring
source-code. If properly designed, even large pieces of source-code, which have been structured with
the means of proceduralization, do work and can be maintained. Nevertheless there are many (real-
life) programming problems that are open to another way of structuring: Object-Oriented Structuring of
source-code.

Historically the object/class-model emerged from trying to simulate physical real-life objects and their
interactions?®. There, classes characterize sets of objects with common properties; this approach can be
seen as the more general one.

Another approach starts by developing programmer-defined types: A number may be thought as being
characterized by its data AND the methods for its manipulation, like addition and subtraction, multipli-
cation and division.

Since real-life objects often can be seen as displaying a considerable complexity, their relevant properties
have to be isolated. That process of model-building is also called abstraction. Object-Orientation has
a considerable conceptual overhead, but a readily approachable aspect can be shown with the stamp-
analogy: Classes within object-oriented structuring are like stamps (which the programmer can carve or
take from a library). With these classes the programmer can instantiate objects, much like the stamps can
be used to produce several prints, into which it is possible to write data by hand. There even may be little
stamp collections, which appropriately combined (“extended”) produce an new type of printed matter.

stamp-/class library (prewritten or self-programmed)

IIUEIRIPIAIA

stamping/instantiating objects

Concept: Object/Class-Model

Concept: Object/Class-Model — This section just introduces the central notion of the Object/Class-Model:
An object is defined as an entity having a state, a behavior and an identity*®.

behavior

@ \ identity-tag

45Nygaard, Kristen and O. J. Dahl. The Development of the Simula Languages in History of Programming Languages. Academic
Press. New York, NY. 1981.

46In object-oriented programming-languages the “state” of an object usually is given by variables and the “behavior” is given by
methods. Though the identity often may be thought as being given by a variable-name, this may not be true when variable-
names are pointers, that may change their pointing-direction! This is the case in Java; there, an identity-tag has to be retrieved
by a special hashCode() -method, as introduced on page 161. CAUTION: Variable-names in Java do not fix the identity of an
object!

131

132 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

In the graphical representation the identity-tag often is omitted, because of self-evidence. But the identity
gives the means to discern two objects with the same state and behavior. Two objects with the same state
and behavior are called equal (but they are not the same due to their different identities).

Later, the object-model is supplemented by an equally generally defined class-model, see page 140.

Example: Object, Class and Class-Hierarchy

As an example of such a general object-notion may be taken a new car coming from a production line:
Although the cars look alike, the car under consideration is a unique one, it has an identity. It has
also a state describable by the gauges for gasoline, motor oil, braking fluid, gear box fluid, cooling water,
battery voltage, engine on/off, lights on/off, blinker right on/off, blinker left on/off, warning blinker on/off
and other dashboard indicator positions. The behavior of that car, starting the engine, driving forward,
driving backward, changing the direction of driving is described by more or less complex sequences of
actions as found in the handbook of the car (or to be learned by driving it). The graphic below presents
two objects which can be seen as simplified representations (so-called abstractions) of a real car:

eGear()

stop()

ignition: on/off
gear: P/R/N/D

ignition: on/off
gear: R/1/2/3

car with automatic transmission car with mechanical gearbox

One car may have an automatic transmission. Another car may have a mechanical gearbox, this changes
the possible state of the car (possible gear-positions are 1/2/3 instead of P/N/D) and this even extends
the behavior of the car by an explicit complex changeGear()-procedure. So far, the structure of the above
objects can be overseen easily. This view may change in cases where ten or hundred cars have to be
considered, abstracted in the way above. If more cars are to be collected, then the different structure of
the objects would become clearer by isolating common states and behaviors to get the pure structure of
the collection of objects:

Car- Class Structure

ignition: on/off

g s

~

QUL

brake() | gear: P/R/N/D

AT i s

\

AT

(brake() | gear: R/1/2/3 changeG}ar()

QUITTY

(The various features, like rounded frames and grayed backgrounds, of the graphic above will be described
successively in the following paragraphs.) Of course, the pure structure above does not relate directly
to any individual object, but any given individual object can be classified fast and easily by using the
structure above. The structure just collects all the different features used to describe the two kinds
of cars above. The iglu-shaped part of that analysis describes a sort of basic car structure giving no
information about what gearbox-system such a car contains. The extension of that structure produces
two new structures: One of those extensions describes a car with an automatic transmission, and the

132 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 133

other describes a car with a mechanical gearbox. The rounded frame with the iglu-like figure inside
represents a structure, called a class. That class can be extended by adding one of the little frames: class

class-extension

S R

brake() | gear: P/R/N/D :

S R

(_brake() | gear: R/1/2/3 changeGegar() :

i,
JUID
iy,

JUID

The resulting new classes above can be used as templates for producing objects (Car-objects*’ with au-

tomatic transmission and Car-objects with a mechanical gearbox). The frame around the iglu-shape, or

around the burger-like shape indicates that it is a class or part of a class-structure. Producing objects

from a class is also called instantiating the class or generating an instance of the class or deriving instantiating a
the object from the class. This instantiating process in a way resembles the stamping-act: The class is Cl0ss

used as a stamp for printing out one or more objects.

The structural analysis of the Car-objects produced a class-hierarchy given by the abstract Car-class, class-hierarchy
without any gear-specification, and the two extended classes, above: A class for cars with a mechanical
gear-box and a class for cars with an automatic gearbox.

Buying a car can be seen as instantiating the car in your living area. Selling removes it. Buying, selling or
scrapping the same car more than once in the time of your ownership would be unusual. So buying, selling,
scrapping can be seen as actions that are part of the behavior of the Car-class rather than reformulating
them for individual Car-objects (The sales-man or the car-crunching machine are not integral parts of
the car’s state or behavior!). These behaviors can be assigned to the Car-class and then are called class-
behavior. class-behavior

The number of Car-objects, which are described with this class-model, neither characterizes the individual
Car-object; but that number describes the set of Car-objects which is considered. So, the “number of Car-

objects” can be seen as a class-state, to be associated with the Car-class. In the frame that fixes the class-state
class-structure, the class-states and class-behavior are collected as squares or square-like boxes in the

upper corners.

The graphics above allow another interesting observation: The base-class, that can be extended, cannot

be sensibly instantiated; the Car-object would have an undefined gearbox and therefore couldn’t describe

an average real-world car. — Such classes which cannot be sensibly instantiated are also called abstract

classes. But, as can be seen above, abstract classes can be used for devising clearer structures and abstract class
abstract classes can have a defined behavior and a definable state which they transfer onto the extended

classes (the ignition on/off state and the other behaviors) and instantiated objects thereof. Abstract classes

here are written with a gray-underlaid frame, to make them discernable from non-abstract, instantiable

classes. (The Java-implementation of the notion “abstract class” is given on page 183 and an elementary

example in Java can be found on page 181.)

Car-Class Hierarch
y grey background: abstract class

grey behavior: abstract method

methods and

. variables
As could be seen above, the very general notion of “behavior” usually is realized as a set of actions or

procedures also called methods. Whereas the notion of a “state” usually is realized as a set of variables.

There can be discerned so-called instance-variables (ignition with the values on/off, gear position with instance-
the values P/R/N/D) used for describing the state of an object and so-called class-variables (number of ‘(I:‘I]c:is(:—bvlgrsio%r;gs
Car-instances) describing the state of the class.

4TThe upper-case letter “C” indicates that “Car-object” denotes a mental image — the model — of a car, not the real thing!

ISBN 3-00-009429-6 www.chartingJava.com 133

instance-
methods and
class-methods

abstract
method

abstract class

134 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

The same classification can be applied to the behavior of classes and objects: There are instance-methods
(start(), accelerate(), ...) that describe the behavior of the individual object. These instance-methods can
be invoked for each object individually (carl.accelerate(slow) and car2.accelerate(fast)). — But there are
also class-methods which describe behavior of the entire class: Like Car.buy(carl) and Car.buy(car2).
The act of buying is taken as a class-method, because the buying-process can be described independently
from the individual car, whereas for example the price of the car describes an aspect of the car’s individual
state. Later, in the context of programming-languages, the equivalent to producing and buying a car can
be seen as the instantiation of an object by using a class-specific constructor-method.

These remarks make it possible to identify the various abstracted notions in the graphical representation
of the class-model:

AV

class methods |:)
class behavior

Ry,

class variable
class state

>

e

behavior

class name state

CCLLEE T L LT TR R TV TR TTEEER I Y

Wy,

o

S
L T T LTI LT T TRETT T A

Finally, consider a reason why even unimplemented methods, so-called abstract methods may be a sen-
sible idea: The brake()-method is a method of the abstract Car-class. But the braking-process differs
in a car with a mechanical gearbox from that in a car with an automatic gearbox (The clutch should be
released during a heavy braking-process.). So, specifying the braking process for the entire Car-class be-
comes difficult because the brake()-method has to be implemented differently for the two derived classes.
But still it may be useful to have at least the idea of a brake()-method within the Car-class, because
braking is what every car should be able to do. This necessity can be indicated with a non-implemented
(abstract) brake()-method in the Car-class. (The Car-class itself couldn’t be instantiated, because there
exists no conventional car without a transmission of any kind, and therefore the entire Car-class has to
be called abstract.) Of course, a class with at least one abstract (unimplemented) method automatically
has to be declared abstract, because objects with unimplemented methods violate the idea of a defined
behavior.

What has done with the brake()-method could have been done also with the accelerate()-method, assum-
ing that acceleration is thought of involving a changing of gears. Why the difference? There exists no
particular reason for that difference: Class/object-structures are models chosen by an onlooker for de-
scribing an area of interest or a problem according to the onlooker’s necessities. THERE IS NO INHERENT
ULTIMATE TRUE STRUCTURE TO BE FOUND, the choice above was taken just to illustrate the class/object-
model. Of course this freedom, or seemingly arbitrary approach, can be used to properly design classes
to depict real-world-problems; with the intention of letting this class/object-model be re-used as much as
possible. — Making class-design, problem-oriented as well as anticipating future needs, can turn out to
be more difficult than expected!

The relation between a collection of objects, class-methods or class-variables and a given class-structure
is restated in the following graphic:

Class Structure

134 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 135

Observe that all objects share the class-variables and the class-methods. Objects Number 1 and Number 4
are equal but not the same! (Their state and behavior are the same but they have been given different
identities.)

Objects . Class-Hierarchy 3 Class-Structure
. super-class -
Q] N =\\\|||||||||ll""',’_ . =\\\\IIIIIIIIIIIIIII/,’=

,\\llllljllllllllll,

sub-class . class-extension

“ (0

extension-
hierarchy

A given class-structure, like that of the Car-class, makes it easy to construct sub-classes by adding class-
extensions. In the (resulting) class-hierarchy, also called extension-hierarchy, those classes that have

been extended often are called super-classes, their extensions consequently are also called sub-classes. super-classes
Observe also that THE MOST COMPACT DESCRIPTION OF THE CLASSES CONSIDERED GIVES THE ORGANI- and
ZATION OF THE CLASS-STRUCTURE. Therefore in programming and documentation, classes are econom- sub-classes
ically declared or described by using the more fragmented but least redundant representation given by Cm'?)iiifgﬁ;“;‘;

the class-structure (and avoiding the organization as a class-hierarchy or worse as a collection of objects). d?gclﬁpﬁo%fhus
widely usead!

The notions “object” and “class” thus can be seen from two sides:

(Class as Template for Creating Objects) A class can be seen as a collection variables and methods
that can be of the instance- or class-kind. A class-hierarchy is given by a structured collection of these
variables and methods. The class then serves as a template for objects; and the hierarchy of classes
represents a tree-structure of successively refined templates. Class-methods and class-variables can be
used independently from the existence of an object.

(Object Collection is abstracted to Class) Consider several similar objects together with methods that
describe how to construct and how to destruct an object: The methods that exist independently from the
existence of any object are called class-methods. There may be a variable that has the same value for
all objects under consideration, that variable is likely to become a class-variable. Another variable that
occurs in some of the objects and contributes to the object’s individuality by having different values from
object to object needs to be an object’s state- or instance-variable. Depending on the variety of the given
objects, there are compilable different collections of variables and methods. These collections constitute
the classes that can be arranged into a class-hierarchy.

So both approaches, the one starting with the class-notion, or the one starting from the object-notion are
part of - or result in the same object/class-model.

OUTLOOK: The class-structure is what will be used to define class-hierarchies in Java on page 163. An
example of a larger class-hierarchy is given by the graphic on page 564 in the context of arranging a
Graphical User Interface; details of the emerging class-structure of the three base-classes (Component,
Container , JComponent) are given successively in the lists on pages 553, 556 and on page 559.

Overriding Methods and Shadowing Variables

Overriding Methods and Shadowing Variables — Consider the brake()-method in the graphics around
page 132; there the abstract method has been redefined differently in both sub-classes. What about re-
defining non-abstract methods of super-classes? Or formulated conversely, what if a method or a variable
in a class-extension has the name of a method or variable in the super-class? First, objects derived from
(one of) the super-classes use the original method, BUT all objects derived from the class-extension or its
sub-classes use the newly defined (instance-)method or (instance-)variable. The overriding of a method
has been visualized in the graphic below:

ISBN 3-00-009429-6 www.chartingJava.com 135

again abstract
methods

136 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

Objects Class Structure

name()
A

deactivated - "overridden"

nae(fo — |)

MOCTRIDN

O
name(Jo|=—|)
(8] m)

Remember the shadowing of variables by local variables of Java methods as introduced on page 123, shad-
owing of variables by class-extension can be imagined likewise. Overriding class-methods and shadowing
class-variables would produce class-specific variants. For an example consider the Java source-code on
page 167 and the corresponding footnote following that source-code.

Class-Extension — Inheritance with multiple Super-Classes

Class-Extension — Inheritance with multiple Super-Classes — Another approach to the process of ex-
tending classes may be thought of by imagining a class having several super-classes. Example: Below the
Car-class extends the class PeopleTransporter and the class FreightTransporter. Each instance of a Car
may be used to transport people as well as freight:

Class—Structure with Multiple Extension

PeopleTransporter FreightTransporter
\\lIIIIIIIIIIIIIl[,’ OpenDOOI'() S\\IIIIIIIIIIIIIII,e

% W

U

I,

openDoor(

i
“nn

o

Car

T,

2,

Whlch dOOFO ’IIIIIIIIIIIIIIIII\ V
class—extension

Example I: The Car-class may extend the class PeopleTransporter, but at the same time the Car-class
may extend the class FreightTransporter. This makes it possible to construct an ambiguity: Both classes
may use a method openDoor(), but as can be seen with the example of a standard car, such a method
usually means different doors (doors to the area with seats or door of the car’s trunk). Though, here, the
ambiguity may seem constructed, a general method for structuring contexts should be designed to spare
the programmer or the user unnecessary complexities. (Sketch the class-structure for this example, the
graphic above may serve as an orientation.)

From above emerges a BASIC PROBLEM: MULTIPLE INHERITANCE BECOMES AMBIGUOUS IF TWO BASE-
CLASSES HAVE METHODS OR VARIABLES OF THE SAME NAME. The question may arise about which
member takes precedence when they both have the same name. Therefore, using classes that extend
multiple super-classes should be considered rather careful.

A tricky workaround concerning this predicament can be formulated as follows: Consider a class hav-
ing only named, but unimplemented methods, also called abstract methods. This makes such a class
automatically abstract, because it obviously cannot be sensibly instantiated. This kind of class, with no

136 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 137

apparent functionality, furnishes a kind of template and this seems to be the best one can get, to for-
mulate multiple inheritance without an inherent source of contradictions or unnecessary considerations
about precedence.

Example I (continued): So, using the example above, PeopleTransporter’s openDoor() and FreightTrans-
porter’s openDoor() may be unimplemented. When both are extended to the Car-class, the openDoor()-
method has to be implemented considering the two types of doors for loading people and for loading
freight.

Class—Structure with Interfaces (fully abstract, multiply implementable)

PeopleTransporter FreightTransporter
openDoor(

implement openDoor(

openDoor(

\j
implementation of INTERFACES

“Classes” which contain only unimplemented, so-called abstract, methods AND allow other inheriting

“classes” of the same kind at their side are called “interfaces” in Java. The name “interface” signals the Java's
option to realize a kind of multiple inheritance as described above. Java*® classes can implement multiple "interfaces”
“interfaces” and thus furnish a version of multiple inheritance that proves relatively free of inherent
complexities. For more see page 185.

Communication-Mechanisms

Communication-Mechanisms — The structuralizing of objects by classes and class-hierarchies may be
considered as useful, but coexisting objects should be able to communicate to simulate real-life interaction
or just to make the object-model more efficient:

Method-Activation or method-calling represents the natural means of communication between objects.

This requires the objects to know each other well, but this knowledge of each other may also involve
an unwanted specialization of the objects.

Communication by method—-call or by dispatching an Event—Object

method—call

SOURCE/F\ DRAIN
£ or

instagtiation /Senéi‘-/kydf‘/mf!

"sending" an (event-) object

Message-Objects exchanged between communicating objects generally requires the objects to know very
little about each other: The only knowledge, that remains necessary, is to know how to interpret the
message-objects, how to send them and how to listen for them. The communication is thus realized
by exchanging messages between objects, this “uncouples” objects. Then, the methods that have to

48The programming-language C++ allows multiple inheritance which has to cope with making inherited behavior non-ambiguous.

ISBN 3-00-009429-6 www.chartingJava.com 137

138 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

be called, are only listening- and dispatching methods, which, by following conventions, generally
simplifies matters! For an object in a message-exchange context, a carefully-designed set of message-
objects furnishes a relatively lean interface to its outside world. The rest of the implementation of
the object could be changed, if necessary, without changing the behavior of the object. This isolation
of the inner workings of an object exemplifies the concept called encapsulation. Like in procedu-
ralization, encapsulation of object-functionalities means hiding the details of the implementation.

For more Java-related information on general messaging see pages after page 271. If the interaction
between objects is realized by exchanging message-objects rather than by issuing object-specific method-
calls, then this is one first step towards what is often called component-model. There, objects usually
send and filter highly normed event-objects. For more information on the area of software-components,
see page 311.

Object/Class-Model Keywords

Object/Class-Model Keywords — The following paragraph gives a small glossary on the main notions of
the object/class-model:

abstract- or virtual class A CLASS THAT CANNOT BE INSTANTIATED, this means that no instances of that
class can be created. Abstract- or virtual classes are collections of common states and behaviors; but
these become only part of an object that is an instance of some sub-class of the abstract- or virtual
class. Some of the methods may be implemented and others may be declared abstract. Example:
A Car-class which lacks the specification of the transmission type is an abstract class, the brake()-
method may be abstract but the accelerate()-method may already be implemented.

abstract method A named method with no functionality defined. A class which contains at least one
such unimplemented method automatically cannot be instantiated; that means a class with a single
abstract method becomes implicitly abstract itself! A standard use of abstract methods can be found
in multiple inheritance, where these method-declarations (in Java “interfaces”) are used as tem-
plates. But as could be seen with the example of the Car-class, when considering the brake()-method
non-abstract, classes can be considered to be abstract without having abstract methods. A car has
to have either an automatic transmission or a mechanical gearbox! (Unless it is an electrical car;
this option has been ignored as the Car-model was introduced.)

class A collection of possible states and behaviors, either gathered from a set of similar objects or es-
tablished from a given problem or area of interest (class as collection of states and behavior),
(class as an abstraction of a collection of objects). In programming, a class can ALSO be taken
as a programmable type-concept (class as a customizable type). A class can be seen as a tem-
plate that furnishes the fields (state) and methods (behavior) of an object (class as a template). A
class gives the behavior and the possible states; an object of that class has the same behavior but
only one fixed state and an identity. Due to the given identity (a registration-number or some other
tagging-instrument) of an object, there can be several objects with the same state, instantiated from
the same class.

class-extension Defining a new (sub-)class by adding other kinds of states and behaviors, respectively
kinds of variables and methods to an existent class.

class-hierarchy A collection of classes, arranged according to their dependencies in form of sub- and
super-classes. These kind of dependencies usually form a tree-like structure.

class-methods Methods which are associated with the class, not with an individual object. For example,
methods (also called constructors) for creating instances of that class. In Java, beside constructors,
so-called static methods are the class-methods.

class-variables Variables that are associated with the class, not with an individual object. For example
the number of objects that have been instantiated during the use of the class can be counted by
using a class-variable. In Java, class-variables are also called static variables.

container-object An object which contains a list of references pointing to other objects. Container-objects
typically implement buffers, stacks or little non-persistent databases. dJava supplies container-
objects like instances of the class java.util.Vector . CAUTION: Though Java array-types can
index objects, array-types are something different than class-types (See the syntax-diagram on
page 143, and the introduction on page 234.). Only from Java class-types can be instantiated objects!

138 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL 139

encapsulation Hiding, often complex, self-contained solutions of problems and giving them a much eas-
ier programmer- or user-interface. This allows a relative ease of use without having to grasp in-
ner complexities. Proceduralization offers a means of encapsulation by needing only to know the
method’s signature and return-value to use it. Object-Orientation can be made to work similarly
on the level of the entire object. Encapsulated code may document its functionality in a so-called
(Application) Programming Interface (API). Especially in the context of networking, the effects of
simplifying things, by encapsulation of code, are circumscribed by the notion “transparency”.

inheritance All sub-classes (or class-extensions) receive the methods and the variables furnished by
their super-classes (sometimes also called parent-classes). INHERITANCE DESCRIBES THE SAME
AS CLASS-EXTENSION; but inheritance focuses on the sub-classes whereas extension stresses its
starting-point being the super- or parent-classes.

instance of a class An object derived or instantiated from that class. The class represents a template for
state and behavior; an object bears a concrete state, a concrete behavior and and identity(-tag). Also
refer to the item “object” below.

instance-method A method associated with an individual object (in contrast to a class-method which is
associated with the entire class). The nature of that association, for example, makes the method
change one of the object’s variables. Instance-methods are taken to represent the behavior of their
object.

instance-variable Instance-variables are associated with an individual object (in contrast to a class-
variable which is associated with the entire class). Instance-variables describe the state of their
object.

method A method can be called (for example by other objects) to alter the object’s state or to send mes-
sages to other objects. In programming practice, a method (also called function, procedure, subrou-
tine) usually represents a kind of named piece of code associated with an object or class. Usually
methods are the means by which another object can change the object’s variables (alter the object’s
state).

message A signal from a source-object to a target-object, usually requesting a method-invocation of the
target-object. Sometimes, simply calling the method of another object and transferring information
within the method’s arguments is considered as sending a message! But, often messages are ob-
jects themselves, then they bear a standardized structure, which is known to all communicating
instances. Then, the method-calls used for communication of objects become highly standardized.
Usually a message-object contains the name of the sending object, the name of the receiving ob-
ject, the name of the method to invoke and some variables that are used as the invoked method’s
arguments. This concept has been developed further beginning with page 271 and on page 571.

multiple inheritance The case where a class inherits state and behavior of multiple super-classes (In
Java, multiple super-interfaces). To avoid ambiguities of the super-classes with same variable- or
method-names, only abstract methods and unassigned variables should be used. The Java inter-
face -construct furnishes this restriction.

object An entity with a state, a behavior and an identity. In programming, an object is given as an
entity of variables and methods together with an identity. This generality often reduces to an object
being seen as a variable that has been instantiated from a class-definition, where the class is taken
to be a sort of generalized type-definition.

overloaded methods Methods are identified by their object’s name, their own name and their parameter-
list. So even in their own class, different methods can have the same name but a differing parameter-
list to remain valid. Such methods are called overloaded. Remember the section beginning with
page 124.

overridden methods Overridden methods always occur in the context of a class-extension: A class-
extension may define a method with the same name and the same list of parameters as a method
given by the super-class. The newly defined method becomes the default method of any objects
instantiated from this extension or any further extensions. An analogon on the level of variables
presents itself: Two variables with the same name but different overlapping scopes produce the
following effect: The variable with the limited scope overshadows the other. (Why are there no
overridden variables? Because overriding variables would amount to redefining the type of the
variable-name, nothing more.)

ISBN 3-00-009429-6 www.chartingJava.com 139

140 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

Pragmatics: Constructing class-hierarchies, to describe a problem efficiently, usually turns out to be de-
manding and even may need redesign efforts. But there are some simple rules and conventions that may
ease the task: When describing the real-life problem, using the everyday language,

nouns indicate an object or a class to be used in the object-oriented analysis,
verbs indicates a method’s functionality and the formulation

is @ name indicates something to be an object or a sub-class.

Object-oriented analysis of problems can happen without using a programming-language. Object analysis
represents a problem-oriented method of program-design and therefore usually happens before construct-
ing source-code. But object-oriented design usually addresses itself to EXTENSIVE real-life problems
with less dominant algorithmic complexities. The wealth of approaches and methodologies of object-
oriented-analysis and -design is described in books or related Internet-sites.

Concept: Object/Class-Model within Programming-Languages

Concept: Object/Class-Model within Programming-Languages — In many programming-languages, ag-
gregates of variables are called record s or struct s. Aggregates of command-sequences and variables
are described by functions, methods or subroutines. Here aggregates of variables AND methods are called
classes.

class nane

{

vari abl es;
nmet hods; /Il usually for manipulation of the variables

}

In that context, remember the object-model on page 131 and the graphic of the general class-model on
page 134. The general class-model, introducing state and behavior, changes in the context of a program-
ming language to a class-model given by an aggregate of methods and variables:

AV Ry,

static methods |:)

>

S

.~ 7 static variables

methods

variables

ATy,

o

class name

S
G T LR L LT TR RO T TR TT O T s

Classes in programming-languages can be given another variant of definition: Classes just furnish a
way for the user to aggregate data (variables) and methods (functions, subroutines). Object-oriented
programming-languages also furnish ways to introduce static class-members and ways to derive individ-
ual objects from a given class.

For practical programming purposes the notion of a class can be used

e to introduce programmer-defined types,
e to use a class as a self-contained program and

e to use a class-structure as an index for reference when re-using software:

Classes as Custom-Programmed Types Classes can be used to define programmer-specified types
within the programming-language. These programmer-defined types give templates for the data and
furnish the methods to manipulate the data. The central idea aims at presenting the data and meth-
ods for the data-manipulation as an entity. Thus, in other contexts, methods for data-manipulation
do not have to be re-written. To the programmer, both, the data and the methods, are related in-
trinsically; just like any integer type furnishes mathematical functions like addition, subtraction,
multiplication and division for its manipulation:

140 www.chartingJava.com ISBN 3-00-009429-6

CONCEPT: OBJECT/CLASS-MODEL WITHIN PROGRAMMING-LANGUAGES 141

class Integer /I this is a concept-class and does not work in Java

{

int i
addTo(int j){return i+j:}; multiplyWith(int j){return i*;}; Il etc...
}

If the standard types of the given programming-language can be supplemented by types defined by
classes, then variables of class-type even can be declared inside classes:

class C assNanmel _
{ ClassNane2 identifierCOfQbject; /I declaration of variable of class-type

}

Thus a variable of class-type — an object itself — can be seen as part of the state of an object:

@\:' or, in pointer notation @\:'
A \
AN
LR

So the state of an object is given by objects (pre-programmed or programmed by the application-program-
mer) or by variables of primitive-type. Objects of standard classes given by the programming-
language (Java: String) or variables of primitive-types (Java: int) finish the recursion indicated
by the diagram above (objects in objects in objects ...). For example, in the concept-class above,
named Integer, the int -variable of primitive-type, given by the programming-language, defines the
state. A practical example of this idea is given on page 142, where a newly-defined type (VarInteger)
is used for declaring and instantiating a variable (there the variable can be seen as an equivalent to
an object).

Instead of containing only a variable-declaration, a class even may contain a class-definition, a so-called
inner class, giving a kind of local type:

class O assNanel
{ class O assNane2 // class-definition

{
}

Cl assNanme2 nane; // declaration of a variable of that local type (inner class)

}

“II"'

‘\|IIIIIIIIIIIIIII|',"

‘\III"
MITITY

N

1\

\LLLRRRRLLRNRRRRNRRRRRRRRNNTINIREEY /)
o RN RRR RN RN RRRREAY

*,
'llIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“‘

Inner classes are described further beginning with page 157.

Class as a Program A class can be a flexible type, or if a class is furnished with a main() -method,
then a class can be a program:

class Program // this is a concept program and does not work in Java

{
}

main (){ statenents }

ISBN 3-00-009429-6 www.chartingJava.com 141

A class with a
main() -method
remains
instantiable!

142 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

If the source-code inside the main() -method references other classes or creates and references other
objects, then the class with the main() -method does represent the central piece of a program!
Conventionally, classes with a main() -method enable an end-user to issue some command on the
level of the operating-system, eventually triggering a call of the main() -method (the java -command
entered into a terminal-window of the native operating-system triggers a call of the main() -method).
This peculiarity gives classes with a main() -method all the characteristics of a regular program.
Thus, in most object-oriented programming-languages, the class-notion becomes more than simply
a flexible way to define new types.

Class-Structure as Index to Software-Library But the perspective of the class/object-model gives another
important functionality to object-oriented programming-languages: As can be seen in the graphic
on page 135, class-extension lets the code be positioned in a sort of programmer created hierar-
chical index-structure for easier identification. Successive class-extensions and the ensuing class-
hierarchy can be used to realize a structure of the involved objects. Since the super-classes
may be used multiply (remember the car example above), that kind of structuring also makes it
possible to easier re-use code.

Java: Classes as Programmer-Definable Types and Programs

Java: Classes as Programmer-Definable Types and Programs — Java classes can be more than templates
for objects. A Java class with a main() -method constitutes the center of a program. The fully-functional
example below defines two Java-classes: The first class introduces a programmer-defined type and the
second class acts as a program due to its main() -method. (The use of the modifiers public , static
and void is described elsewhere: public on page 175, static on page 147 and void beginning with
page 117)

/I a Java class: a programmer-defined type or a program
class Varlnteger /I programmer-defined type
{ int i /I state: instance-variable
Varlnteger(int x { i =x } /I class-method: constructor
public void set(int x }{ i =x } /I behavior: instance-methods
public int get(){ return i; }
public void increment(){ i = ++i; }
public void print(){ System.out.println(i) %
public class Program /I program or application
{ public static void main(String unused[]) /I class-method: static main()
{ Varinteger theObject = new VarInteger(0)
String theOtherObject;
theOtherObject = new String("Hello");
theObject.print();
System.out.printin(theOtherObject);
)
[localhost:~/JavaCodeFiles/Basics1/SCObjectOrientati onl] andreadipietro% javac Program.java
[localhost:~/JavaCodeFiles/Basics1/SCObjectOrientati onl] andreadipietro% java Program
0
Hello
[localhost:~/JavaCodeFiles/Basics1/SCObjectOrientati onl] andreadipietro%

*

Another example of a programmer-defined type is shown in the source-code on page 76, where the Pair-
class has been introduced. These two approaches for using Java classes (program and custom-defined
type) are the most typical and elementary ones. — A class may also be used to just furnish a collection of
methods; as does the java.lang.Math -class which just offers a range of mathematical functions to the
Java programmer (for more see pages 94 and 257).

An instantiation of a class with a main() -method has no special meaning with respect to the main() -
method and its program-character: The main() -method just remains one of the static methods, except
that it can be activated by an external event (the issuing of the “java "-command). A first example of such
a case is given on page 159.

Java: Reference-Types and their Instantiation with the new-Keyword

Java: Reference-Types and their Instantiation with the new-Keyword — Remember the introduction of
primitive-types on page 83. Variables of primitive-type have their identifier fixed to an address in the com-
puter’s Random Access Memory (RAM). These types, with identifiers being an unchangeable reference,

142 www.chartingJava.com ISBN 3-00-009429-6

JAVA: REFERENCE-TYPES AND THEIR INSTANTIATION WITH THE NEWKEYWORD 143

thus being glued to the RAM-address and exhibiting a fixed behavior (addition, division with number

types), are called atomic- or primitive-types. Primitive-types constitute an integral part of the Java lan-

guage and prescribe the data-format (int : 4bytes) and the possible manipulations (Addition, Subtraction,
Multiplication, Division). With variables of primitive-type assignment happens by-value, this means that remember:
an assignment copies the value to the variable-name’s part of the RAM. Usually a computer processes assignment
variables of primitive-types faster than Java objects of class-type. by-value

Java offers two kinds of basic non-primitive-types, the so-called reference-types :

class-type Currently discussed. A variable of that type is instantiated by prefixing a constructor-call
with a new-keyword; for more see page 145.

array-type Realizes a simple form of aggregation of values or object-references. Variables of class-type
as well as variables of primitive-type always can be aggregated as an array. Variables of array-type
are recognizable by the brackets [] used in declaration and referencing, for more see page 234.

An example of introducing a class-type has been given in the preceding program on page 142. There has
been defined a class(-type) “VarInteger” and from this class has been instantiated an object (referenced
by an identifier “theObject”).

The interface-type gives a variant of the class-type for cases of multiple-inheritance, for more see page 185.

| ReferenceType |

InterfaceType |—

ReferenceType = ClassOrInterfaceType | ArrayType

ClassOrInterfaceType := ClassType | InterfaceType

ClassType := TypeName

InterfaceType .= TypeName — ClassType 146, InterfaceType 187, ArrayType 234
(ClassOrlInterfaceType is used in ClassInstanceCreationExpression on page 151)

Like variables of primitive-type, variables of reference-type have identifiers that point to an address in
RAM-space. But, the RAM-space-address of variables of reference-type is changed by assignment (=),
NOT the value stored there, as it is the case with variables of primitive-type. IMPORTANT TO NOTE:
IDENTIFIERS OF VARIABLES OF REFERENCE-TYPE CAN BE SEEN AS ALIASES AND THEIR POINTING-
TARGET CAN BE CHANGED BY ASSIGNMENT:

Variable of reference—-type:

RAM Java compiler Java source—code

/["String" is a reference-type in Java

String name = "Text";

AR

// another name for the SAME object
String name2 = name;

S

A reference is a container for a RAM-address which can be changed by the programmer by assignment.
That’s an important difference to Java variables of primitive-type where the references are fixed to an
address of the RAM-space. And the act of assigning variables of primitive-type to each other with the

equal sign (=) means copying. (see the graphics on page 83) For variables of reference-type assignment assignment
by-reference

= |X|m|A

ISBN 3-00-009429-6 www.chartingJava.com 143

144 STRUCTURING CODE AND DATA: OBJECT-ORIENTATION

(==) means: If objects and associated names are given, reassignment of names by using the equal sign (=)
only exchanges references, not the entire object, as indicated within the graphic above.

Copying of an object, a variable of reference-type, is done with a clone() -method as described below:

Copying a variable of reference—type with the clone()—method:

RAM Java compiler Java source—code

/["String" is a reference-type in Java

String name = "Text";

— [X|m|=

/I a copy of the object

name2 String name2 = name.clone();

= | X|m|A

The clone() -method PRODUCES A NEW OBJECT that contains the same data AND RETURNS A REFER-
ENCE TO THAT NEW OBJECT! (It does NOT “return the new object” itselfl)

This statement is true in all generality: Java-methods with return-types of the primitive kind return the
variable-value itself. But if the RETURN-TYPE OF ANY JAVA METHOD IS OF REFERENCE-TYPE, then, like
the clone() -method, the method returns only a reference to the object!

The name of every reference-type could be suffixed with the name “Pointer” (StringPointer instead of
String), to reflect the difference to the named value of data that has a primitive-type. Data of primitive-
type has only one name, assignment with the “="-operator copies that value. Whereas data of reference-
type can have multiple names, meaning that multiple pointers are referencing the same data; here as-
signment with the “==’-operator just makes the pointers equal. The assignment-operator, used with
identifiers of reference-type, does not copy the data!

identifier3
identifier4

identifier2

identifier of clone

Q

identifierOfClone = identifierl.clone():

Any name of reference-type can be assigned the literal nu I I , which lets the name reference nothing.

name SN

name = null;

144 www.chartingJava.com ISBN 3-00-009429-6

JAVA: CLASSES 145

vari abl eNanme = null; /I an identifier of reference-type not yet assigned

NullLiteral = null

Instances of reference-types (to be more precise, instances of non-abstract classes and arrays) are created
by prefixing so-called constructor-methods with the neW-keyword or by calling so-called factory-
methods, described later on page 151. (The clone() -method is a factory-method, because calling this

method creates a new object and this method returns a reference to that object.) constructors and
factory-methods

Cl assNane vari abl eNamre = new O assNane();
/I Class-methods with the class-name are called constructors.

The new-keyword in conjunction with a constructor allocates the memory, creates and initializes the ob-
ject. Then the variable-name (identifier) represents a reference to the object; the variable-name does not
represent the object itself, contrary to names of variables with primitive-type!

Below the processes of declaration, memory allocation and instantiation are compared for variables of
primitive-type and variables of reference-type:

| variables of type- | | Declaration Allocation Instantiation |
-primitive PrimtiveType nane = val ue;
-reference Cl assType nane = new d assType(); + a constructor-call
-reference (array) PrimtiveType[] nane = new PrimtiveType[; (arrays, see page 234)
-reference (array) Cl assType[] nane = new d assTypel];

Java’s String
In Java, the String -class has been allowed an exception to the general class-usage; a Java String -object exception
can be instantiated like a variable of primitive-type:

"

String s ="text ";

Only in this special case of the String -class, Java allows an instantiation like those used with variables
of primitive-type. Actually the String -class also allows every String -object to be instantiated using the
new-keyword prefixing the String -constructor:

String s = new String("text ");

This standard way of instantiating objects of class-type has been used multiply in the previous programs.

Java: Classes

Java: Classes — The following sections use the class-concept together with the idea of a reference-type
to describe the Java-specific realization of programmer-defined classes. This includes, for example, inner
classes, anonymous classes and anonymous objects, supplemented by scoping- or accessibility considera-
tions.

In the previous chapter, the description of proceduralization by using methods had more implications than
could be forseen by the pure concept®’, the same is true with the implementation of the class-concept by
the Java programming-language.

Java: Class-Declaration

Class-declaration may also be called class-definition or class-implementation. The standard Java-form
can be seen below:

class O assNane { classMenbers }

49Starting with considering named blocks of code, ending up with local variables making possible overloading, recursion and call-
back.

ISBN 3-00-009429-6 www.chartingJava.com 145

