Charting Java

Mary Cosway and Andrea di Pietro

August 14, 2002

Special Thanks for the support given by Vincent and Jerome.

Copyright © by Haiko Schmarsow. All rights reserved. This publication or any part of it may not
be reproduced, stored in a retfrieval system, or transmitted, in any form or by any means, elec-
fronic, mechanical, photocopying, recording, or otherwise, without the prior written permission by
the owner of the copyright. The copyright and the statements in the following paragraphs ex-
tend to the downloadable data offered under the domain-names www.chartingJava.org and
www.chartingJava.com

The use of general descriptive names, registered names, trade names, frademarks, etc, in this publi-
cation, even if the former are not especially identified, does not imply that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

All names and services identified throughout this book, also those which are, or which are related, to
tfrademarks or registered frademarks of their respective companies, are not used to convey endorse-
ment or other dffiliation with this publication.

This publication is provided “as is” without warranty of any kind, either express or implied, includ-
ing., but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or
non-infringement. The publisher or owner of the copyright assumes no responsibility of any kind for
errors or omissions and ensuing damages resulting from the use of the information contained in this
publication.

Written with LyX, the lafest version used was 1.1.6fix2, figures and images were realized using Xfig 3.2
and Gimp Version 1.2 on a Linux/KDE platform (SuSE 7.2).

Publisher, holder of copyright and contact for feedback is (June 2002) Haiko Schmarsow
(haiko@schmarsow.de)

ISBN 3-00-009429-6

ISBN 3-00-009429-6 www.chartingJava.com 3

www.chartingJava.com ISBN 3-00-009429-6

Contents

Preface 17
This Book o e e e e e e e e e e e e e 18
Structure L e e e e e e e e e 18
Content L e e e e 18
Limitations e e e e e e e e e e e 20

The Reader L e e e e e e e e e e 20
The Authors e e e e e e 21
Conventions L e e e e e e e e 21

I. Computer-Models 23
Elementary Computer-Models 27
A Computer-Model for Programmers e e e e 28
Computers with Multiple Processors and Networks 30
Summary: Computer-Models e 30

A Computer-Model for Hardware Technicians, 30
Processor-Commands, Languages 33
Bits and Bytes used For Coding Human Readable Symbols and Numbers 33
Commands on Processor-Level: Machine-Language and Assembler 35
Languages for easier Coding 37
Language-Processing: Interpreting, Compiling, Virtual Machine 38
Languages: High-Level-Concepts e e e e e 40
Operating-Systems 43
File-Systems o e e e e e e e e e 46

Il. The Java Runtime Environment 49
Installing Java Development Kits (JDKs) 59
Preparations: Generalities on (Downloading) and Installation 59
PATHand CLASSPATHor Unix/Linux or Windows-based Operating-Systems 60
ORGANIZE: Apple Mac OS e e e e e e 61
ORGANIZE: Mac OS 9.x: Installing the Java Development Kit (JDK): 61

ORGANIZE: Mac OS 9.x: Using the Java Development Kit (JDK) 61

ORGANIZE: BeOS e e e e e e e e e e e 62
ORGANIZE: LINUX . . . o o o o e e e e et e 62
ORGANIZE: Linux: Getting the Java Development Kit (JDK): 62

ORGANIZE: Linux: Using the Java Development Kit (JDK): 62

ORGANIZE: Windows o it i i e 63
ORGANIZE: Windows: Installing the Java Development Kit (JDK): 63

6 Contents

ORGANIZE: Windows: Using the Java Development Kit (JDK): 63

ORGANIZE: Development-Environmentseie... 64
Organize: Extending Java e e e e e e 64
How Java Code is Run 65
Compiling Source-Code o e e e e e e e 65
Running Programs/Applications e 65
Running Applets. 0 e e e e e e e 67

lll. Basic Programming |

The Language and Utilities 69
Hello World Program e e e e e e e e e 71
Data-Storage — Data-Structures 73
Concept: Literal, Type, Name and Variable, 73
Data in Form of Literals — What is stored in the computer memory? 73
Type or Class of Literals — How is it stored into the computer memory? 73
Identifier, Name — Where is it stored in the computer memory? 73
Concept: Declaration, Allocation, Instantiation of a Variable 74
Concept: Statically-, Dynamically-, Runtime-Typed Programming-Languages 75
Java: Declaration, Allocation, Instantiation: Examples and Outlook 75
dJava: Literals e e e e 77
Integer-Literals e e e e e e e e 77
Floating-Point-Literals e e e 78
Boolean-Literals e e e e e 79
Character-Literals e e e e e e e e 79
String-Literals e e e e e e 81
Java: Identifier, Name e e e e e e e e e 81
Naming Conventions e e e 83

Java: Primitive-Types i i e e e e e e e e e 83
Logical Type e e e e e e e e e e 84
Numeric Type i o e e e e e e e e e e e e e e e 84
Integral Types i e e e e e e 85
Floating-Point Type o e e e e e 86

Java: Declaration, Instantiation of Variables with Primitive-Type 87
Java: Type-Casting I e e e e e e e 87
Processing Data 89
Concept: Expressions, Statements, Control Structures 89
dJava: EXpressions e e e e e e e e e e e e e e e e e e e 90
Operator Expressions — Calculate, Compare and Change 92
Increment/Decrement and Prefix Operators 92

Arithmetic: Multiplicative Operators. it 93
Arithmetic: Additive Operators 94
Arithmetic: Roots, Exponentials, Logarithms and Powers 94
Non-Arithmetic: String Concatenation. 95

Bitwise: Shift-Operators e 95
Non-Arithmetic: Relational Expression 96
Un/Equality: Comparison Operators, 96

Bitwise and Logical Operators (Single Character: &2, 1) 97

6 www.chartingJava.com ISBN 3-00-009429-6

Contents 7

Logical Operators (Double Characters: &&,11) 98
Conditional-Operator e e e 99
Assignment Operators e e e 99
Type-Casting II (Casting of Primitive-Types) 100
Type-Casting implicit e e 100
Type-Casting explicit e e e 100
Precedence e e e e e 101
Java: Statements, Control Structures and Programs 103
Java: Statements L e e e e 103
Block . . . e 105
dJava: Branching e e 105
Binary Branching — If-Statement 105
Multiple Branching/Cascading — Switch-Statement 106
Java: Looping, Iteration e 108
Post-condition Loops — While, For-Statements 108
Pre-condition Loops — Do-Statement 109
Restricted Jumping — Break, Continue-Statements — Pre- and Post-Condition Mix . 110
Restricted Jumping — Try-Catch-Finally 112
Structuring Code: Proceduralization 115
Concept: Methods are more than Named Blocksof Code 115
dJava: Methods e e e 116
Java: Method-Declaration e 117
dJava: Method-Call e e 118
Concept: Method-Call Arguments — Transfer By-Value or By-Reference 119
Java: Local Variables - Scoping and Shadowing 1 121
S0P . v e e e e e e e e e e e e e e e 122
Shadowing Variables with Methods 123
Concept and Java: Overloading, Recursion, Callback 124
Overloading Methods e e 124
Recursion of Method-Calls e e e 125
Callback of Methods o e e e e e e e e 127
Concept: Triggerable-Methods Or Who calls the main() -Method of an Application? 127
Summary and Outlook: Proceduralization 128
Structuring Code and Data: Object-Orientation 131
Concept: Object/Class-Model e e e e e e e e e e e 131
Example: Object, Class and Class-Hierarchy 132
Overriding Methods and Shadowing Variables 135
Class-Extension — Inheritance with multiple Super-Classes 136
Communication-Mechanisms e 137
Object/Class-Model Keywords et e et ee e 138
Concept: Object/Class-Model within Programming-Languages 140
Java: Classes as Programmer-Definable Types and Programs 142
Java: Reference-Types and their Instantiation with the new-Keyword 142
dava: Classes e e e e e e e 145
Java: Class-Declaration e 145
Java: Class-Instantiation/Object-Creation 149
Java: Defining Constructors i i e 149
Java: Class-Instantiation with Constructors and Factory-Methods 150

ISBN 3-00-009429-6 www.chartingJava.com 7

8 Contents

dJava: Class- and Object Lifespan i et 151
Java: Introducing and Accessing Class- and Instance-Members 154
dJava: Kinds of Classes o i i i i i i e e e e e e 157
Java: Anonymous Objects and -Classes 159
Singleton L L e e e e e 160
Comparing Objects 0 e e e e e e e e e e e e e e e 161
dJava: Identity of Objects e e 161
Concept: Equality of Objects e e e e e 162
dJava: Comparing Objects (1) o e e e e e 162
Java: Class-Extension e e 163
The Class java.lang.Object e e e e e 164
Class-Extension: Member-Access i it e e e e e 165
Java: Class-Extension with Constructors and Finalizers 166
Java: Overriding Methods and Shadowing Variables(2) 167
Java: Type-Casting III (Casting of Reference-Types) 169
Object to Primitive-Typeand Reverse 169
Type-Casting among Identifiers of Reference-Type: Widening and Narrowing 169

Java: Validity of Identifiers: Scoping and Access-Control 171
Un-Shadowing and Un-Overriding 172
Un-Shadowing and Un-Overriding FROM INSIDE AN OBJECT 172
Un-Shadowing and Un-Overriding FROM OUTSIDE AN OBJECT 174
Access-Control e e 175
Modifiers and Accessibility L e e e e e e 180
Java: Other Modifiers. e e e e e 181
Java: Class-Extension with Abstract Classes and Interfaces 183
Java: Abstract Classes and Abstract Methods 183
dJava: Interface-Type e e e e 185
dJava: Comparing (2) and Copying v v v v v v i it e e e e e e e e e 190
Summary: Object-Orientation andJava Classes 193
dJava and the Class-Concept e e 194
Concept: Polymorphism/Monomorphism e i... 194
Concept: Encapsulation e 195
Structuring Code: Multithreading 197
Concept: Concurrency and Parallel Computing, 197
Concept: Threads e e e e e e 198
Concept: Scheduling of Threads (Non-/Preemptive and Priorities) 200
Java: Basic Thread Resource Distribution on a Java Platform 203
Java: Handling Single/Isolated Threads 0..... 205
dJava: Spawning a Thread e e 206
Thread -Object containsrun() -Method 207

run() -Method in Anonymous Class 208

Thread -Object and run() -Method in DifferentClasses 209

Thread -Object is Member in Class of run() -Method 209

Basics of Controlling a Single Thread 210
Concept: Handling Multiple/Communicating Threads 213
Concept: Atomicity and Exclusive Access (Locking) 213
Concept: Waiting e e e e e e 215
Java: Handling Multiple/Communicating Threads 216
Java: Isolating Code and Data from other Threads 216

8 www.chartingJava.com ISBN 3-00-009429-6

Contents

Dangers: Starvatio

L

Dangers: Race-Conditions e e

Dangers: Deadlock
Dangers: Lifelock

Concept: Pragmatics in Thread-Specific Programming

How can Threads interact elementary on a Level above Scheduling?

A Multithreaded Application

Concept: Multiprocessing and Multithreading
Concept: Blocking and Non-Blocking Methods

Summary: Multithreading . .

Concept and Java: Aggregation
Java: Arrays and Array-Type
Java: Vectors
Java: StringTokenizer
Java: Collection-Framework .
Transforming Aggregates . .

Structuring Code: Packaging

of Data

Java: How to Write and How to Installa Package

How to install a pre-written Package

How to use an installed Package

Package Introspection

Compilation, Packages and Compilation Units

Summary: Packages

Standard Code-Libraries: Pre-programmed Packages

Pre-programmed Packages . .

Core-Classes and the Java Runtime System: Location/Content
javallang : Some Standard Classes i e e e e e

Platform and Runtime Environment e

Internationalization - Localization e

Identifying Locality with j

ava.util.Locale -Objects,

Example: Calendar and TimeZone ittt
Example: Resource-Bundle

Character Codes and Fonts .

Java: Encodingsand Fonts e

IV. Basic Programming I

Internal Communication
Java: Communication: Introducing Classes across Files of Source-Code

Communication: Messaging and Streaming
Concept: Basic Communication-Models

Message-Model
Stream-Model

Operating-System/Runtime System: Sockets for Input and Output

Protocol-Model
Initial Triggering

Practical Event-driven Communication i i i i i e e e e

ISBN 3-00-009429-6

www.chartingJava.com

220
223
224
224
225
226
226
227
228
228
230
231
232

233
234
236
237
237
237

239
240
243
244
245
246
246

249
249
249
252
258
259
260
261
263
265
266

267
269

271

271
271
272
273
274
275
2717

10 Contents
Code Structuring: Messaging 279
Java: Implemented: Communication by “Throwing Objects” 279
Source: Who throws How from Where? 279
What is thrown? e e e e e e 280
What’s the Switchboard-Mechanism and Who catches? 282
Summary: “Throwing Objects” e e e e 284
Java: To be Implemented: Observable -Class and Observer -Interface 284
Java: Event Model — A Mechanism fully to be Implemented 286
SOUrce e e e e e e e e e 287
Event e e e e e e 288
Drain e e e e e e e e 288
Trigger e e e e e e e e e e e e e 288
Trivial Example e e e e 288
Remarks about Non-Trivial Extensions 289

Concept: Streams in Java 291
Java: Streams 295
Java: Runtime Input/Output-Streams e 297
Java: Piping with Streams e e 300
Java: Moreondava Streams e e e e e e e 301
Java: Filtering and Formatting with Streams 303
Java: Serialization of Objects, Persistence e 306
Summary: Streams e e e e e e e e e e e e e 310
Code-Structure: Software-Components 311
Concept: Software-Components e e 311
Concept: Object-Oriented Approach to Software-Components 311
Java-Beans: Software-Componentsindava 313
Standard Property e e 313
Indexed Property e e e e e 313
Event-Communication between Software-Components 314
Bound and Constrained Properties e 314
Persistence (of Objects) o i e e e e e e e 318
Software-Design using Components with Reflection and Introspection 318
Summary: Software-Components e e e 318
Persistence 321
Documenting and Archiving Code 323
Comments and Documentation e e e 323
dJava: JavadoC e e e e e e e e e e e 324
dJava: jar -Tool for Archiving e e e 325
Java: Running Java Byte-Code e e e 326
Summary: Java Messaging 329
Thread-Communication i e e e e e e e 329
Exception Throwing e e e e e e e e 329
Observable/Observer-Mechanism 0 0t ettt e e e e 330
Framework: java.util. EventObject , java.util.EventListenero oL, 331
Java-Beans — Software-Components. i e e 331
Abstract Windowing Toolkit (AWT) and Swing i i i i it e et 331

10 www.chartingJava.com ISBN 3-00-009429-6

Contents 11

Summary: Java Language 333

V. Communication between Computers

Networks and Distributed Computing 335
Concept: Classification of Computer-Networks 339
Maximal Number of Hosts and Network-Graph. 340
Geographic Extension. e e e e e 340
Quality of Service QoS (Flow Capacity, Load and Reliability) 341
Communication in a Network — Protocols 341
How are the (Host) Computers identified in a Network? (Host Identification) 342

Inside the Network, how to find the Path from the Source of the Data to the Drain?
(Pathfinding) e e 342

How is the Data actually sent, in what Form does the Data pass the Network? (Path
USing) . . . v i e e e e e e e e 342
Concept: Logical Connections, Virtual Networks 343
Concept: Data-Transfer with Packets and through Channels 345
Concept: Protocols and their Layer-Model 347
Protocol and Type e e e e e e 347
Layers of Protocols e e e e 347
More Classifying Criteria for Protocols 349
Client-Server, Peer-to-Peer Communication i i ittt i e 352
Communication within the Same Levels of the Layer-Model 353
OSI-related Layer-Model 0 i i e e e e e e e e e 353
Networking-Protocols 357
The Internet Protocol (IP) — a packet-routing-, connectionless Protocol 357
IP-Addressing of Hosts e e 357
IP-Addressing of Hosts: Domain Name Service (DNS) 359
TCP/UDP Transport-Protocols e e e e e e e e e 362
TCP - The Transmission Control Protocol — connection- and packet-oriented 363
UDP - The User Datagram Protocol — connectionless and packet-oriented 363
Addressing in TCP/IP-networks: Socketsand URLs 363
Application-Protocols (HTTP, FTP, ...), Types and Network Applications 367
Universally Recognizable Typesand Formats 368
HTTP (Hypertext Transfer Protocol) the Protocol of the WWW 369
Hypertext e e e e e e e e 371
Copying Files over the Network it e i 371
Private Mail e e e e e e e 371
Other Applications 0 i it e e e e e e e e e 371
Triggering: URL- Network-wide Invoking of Application-Services 373
Uniform Resource Locator (URL) — An Introduction 373
URL-Encoding i e s e e e e e e e e e e e 375
Summary: Internet- and Transport-Protocols, Addresses, Domain-Names 377
ORGANIZE: Your Network-Connection ity 378

ISBN 3-00-009429-6 www.chartingJava.com 11

12 Contents

Java: Programming in Networks 381
Java: Relating IP-Address, Host-Name and Owner-Information 381
Java: UDP Sockets and Datagrams i i ittt e e e 384
Java: TCP-Sockets and Network-Connections. 385
Java: URL, Application-Protocol- and Content-Handlers for CLIENTS 388

java.netURL — The Default Mechanism 390
Java-Concept: Uniform Resource Locator in Client-side Connecting to a Network 390
Optional: java.nettURL — The Potential 391
Java: Applets as Programs in a Client-Side-Controllable Environment 396
Applet-Concept e e e e e e e e e e 397
Applet-Infrastructure e e e e e 397

A Simple Applet e e e e e e 399

Organize: Browser with Java Runtime Environment: ToDo 400

Applet Threading e e e e e 401
Applet Introspection e e e e e 402
Applet Communication e e e e e e e 403
Java: Servlets / (CGI) e e s 405
Servlet-Concept L e e e e e e e 406
Servlet-Infrastructure e e e e 407

A Simple Servlet e e e e 408

Organize: Install Server with Servlet-Container: ToDo 409

Organize: RunaServlet e 410

Servlet Threading e e e e e e 411
Servlet Introspection e e e 411
Servlet Communication. e e e e 412
HTTP-Servlet Extension ettt e 413
Java: Remote Method Invocation (RMI)/ (RPC) @ o i i i i e e e e 414
Organize: JRE-Extension: What is needed for a RMI-Connection? 415
ARMI-Connection o i i i i e e e e e e e e e e e e e 416
How is the Remote Method Invocation Service activated? 418
What more? e e e e e e e e e e e 419
Outlook: Java and Networking e e 419

Summary: Java Communication 421

Concept: Distributed Computing and Programming 423

VI. Java Runtime Environment and Security 425

Concept/Java: Scope, Access-Areas, Name-Spaces 429

Java: Runtime Environment 431
Class-Loading i it e e e e e e e e e e e e e e e e e e 433

Class-Loading: The Initial Process, 434
Class-Loading: The Secondary Process 435
Class-Loading: Customized Class-Loaders. 438
java.lang.ClassLoader — Simple Extension 438
java.net.URLClassLoader — Simple Instantiation 438
The Full Loading-Process of Instances derived from java.lang.ClassLoader ... 440
Maximally programmer implemented Class-Loader 441

12 www.chartingJava.com ISBN 3-00-009429-6

Contents 13

Class-Loaders of Arrays? i i it et e e e e e 443
Simple Class-Loading: new-Keyword and the Class.forName() -Method 443
Object Storing and Loading: Serialization 443
RAM Recycling: Garbage-Collection and Weak References 444
Security: Basic Concepts 447
Java Language- and Java Compiler-Security 450
Java Runtime Security L e e e e e 451
Security: Policy-Based 453
Java: Access-Control Mechanism e 453
Secure Class-Loaders and Protection-Domains 454
From File to Policy -Object e 455
Security-Manager and Access-Controller. 455
Java User and Administrator 457
Text-File: java.Security e e e e e e e e 457
Policy Text-Files o i e e e e e e e e e e e e e e 458
Selecting Policies for Running Applications and Applets 460
Some Practical Hints e e e e e 461
dJava Programmer e 462
dJava Security-Manager L e e e e e e e e e 462
The check...() -Methods of the Security-Managers 463
User and Administrator Use of a Security-Manager 465

Why a Security-Manager if there is an Access-Controller for consulting an External
Policy? e e e 465
dJava Access-Controller: Policy e e e e 465
Java Access-Controller: Custom Permissions 467
Java Access-Controller: Protection-Domain 467
Java Access-Controller: Method-Call History 470
Java Access-Controller: Privileged Code e 471
Java Access-Controller: Policy-Secured Environment extends to Objects 474
Applets and Security e e e e e e e 475
Summary: Policy-Based Access-Control Mechanismsindava 475
Security-Related Coding of Data 477
Basic Concepts of Security through Data-Processing 477
Social Aspects: TRUST e 478
Concepts: Some Results of the Mathematical Theory 478
Cryptography with a Secret Key (SymmetricKey) 478
Cryptography with a Public/Private Key-Pair (AsymmetricKey) 479
Hashcode - Message-Digest - Digital Fingerprint - Checksum 481
Signing/Authentifying a Message Using Encrypted Message Digests 482
Securely Associating an Identity with the OwnerofaKey 483
Variants of an Encryption Algorithm (Modes and Padding) 484
More Concepts v v i e e e e e e e e e e e e e e e e 484
Java Provider-Infrastructure: Concept and Implementation 485
User/Administrator: Key-Management and Signing Files 488
Access-Controlling with Signed Data 492
User/Administrator: Howtoencrypt Files 492
Application-Programmer: Signing and Encrypting 492
Installing the Java Cryptography Extension JCE). 496
Usingthe JCE 0 e e e e e e e 496
Infrastructure-Programming: Signing and Encrypting 497
Concept: Network-Security o e e e e e e 500

ISBN 3-00-009429-6 www.chartingJava.com 13

14 Contents

VII.Single User Interface 503
Concept: User Interfaces 507
Hardware User Interface e e 507
Graphical User Interfaces (of Operating-Systems) 508
Graphical User Interface of Operating-Systems: Desktop - Icons - Windows 508
Graphical User Interface of Operating-Systems: Screen-Components 510

OS-GUI: File-System: Opening Files and Folders 510

GUI: Giving Commands: Clicking - Drag and Drop (D&D,dnd) 510

GUI: Giving Commands: MenuBars - PopupMenus - Toolbars 511

GUI: Windows as Containers of Screen-Components. 512

Graphical User Interface of Application-Software 512
Design of Graphical User Interfaces (GUIs), 513
Concept: Programmer’s View of User-Interface (Ul) 515
Program-Structure: Model View Controller MVC) 515
Screen Output 519
Concept: Computers and Images e 520
The Concept of Image-Formats 521
Concept: Colors e e e e e e e e 522

The RGB Color-Model e 523

The CMY Color-Model e et e 524

The CMYK Color-Model solves the Printing-Problem: C+M+Y#Black 525

The HSV and HSB Color Models 525

Two Basic Image- and Color-Formats 525
Direct Color-Model: ARGB 526

Indirect Color-Models e 526

Java: Transparency, Partial Transparency and Opaqueness 527

Java: java.awt.Image . . . L L e e e e e e e e e 527
Java: Simple Bitmapped Images e e 530
Concept: Graphical-Objects e e e e 534
Painting Graphical-Objects e e 536
Java: Object-Painting on Screen-Components 538
Concept: Screen-Components i e e e e e e e e e 540
Java: Basic Swing Screen-Components. e e 543
Lightweight-/Heavyweight Components — Java: AWT versus Swing 548
Platform and Java Runtime Points-of-Contact 551
Java: Basics of Screen-Components. e e 551
Java: java.awt.Component L L e e e e e e e e e e e e e 552
Java: java.awt.Container . . L L L e e e e e e e e e e e e e e e 556
Java: javax.swing.JCOMPONENt L e e e e e e e e e e e e e 559
Java: Frame and JFrame e e e e 561
AWT and Swing Class-Hierarchies 0 i i i e e e e e e e e e 564
Java: ContentPane and JLayeredPane e 566
dJava: Fonts e e e e 569

14 www.chartingJava.com ISBN 3-00-009429-6

Contents 15

Event-Communication - Mouse and Keyboard 571
Event Delegation within the Abstract Window Toolkit (AWT) 571
Concept: Mouse Interaction e 571
Concept: Keyboard Interaction ittt i.. 572

Java: The AWT-Event-Communication 0.iee.... 572
Java: Delegation Event-Handling i e e 574
dJava: Triggering e e e e e e e e e e e 574
Java: Switchboarding/Event-Scheduling, 574
dJava: Event Types e e e e e e e e e 575
Java: Sources, Event-Objects, Sinks (Listeners). 576
Summary: Java Variants of Event-Listening 579
Java: Adapter-Classes e e e e e e e e e e e e 580
Java: Examples for Mouse- and Keyboard Event Handling 581
AWT-Switchboarding and Java e e e e 585
Using the Event-Dispatch-Thread 586
Java Programmer: Sources of AWTEvent-Objects 590
Java: processEvent() -Method as Drain and Source of AWTEvent-Objects 592
Interaction: Screen, Keyboard and Mouse 595
Java: Changing Components and ImagesOn-Screen 595
Java: Painting-Methods e e 595
Pixel-Based Images e e e e 596
Graphics-Objects e e e e 597
Screen-Components L e e e e e e e e e e 597
Summary: Drawing On-Screen e e 599
Java: User Changes User Interface 599
dJava: Animation L e e e e e e e e e e e e e 602
Concept: Time-Delayed Processing i it e 605
Java: Time-Delayed Data e e e e e 606
Java Overview: Interfaces and Classes for Time-Delay 606

The Workings of an ImageObserver -Object 607
java.awt.image.ImageProducer L e e e e e e e 610
java.awt.image.ImageConsumer e e e e e e 610

dJava Swing Desktop L e e e e e 610
Java: Applets - Applet Runtime-Environment 613
Triggering And Configuring an Applet-Run 614
Class-Hierarchy and Class-Structure of Applets 615
A Simple AppletViewer e e e e e e e e e e 619

Summary: Graphical User Interfaces (GUIs) 621

Outlook: Single User Interface 623

VillAppendix 625

Reflection, Infrospection and Profiling 629

ClassSes . . . v v i e e e e e e e e e e e e 629
Objects o e e e e e e e e e e 630
System e e e e e e e e e e e 631
Applets . . L e e e e e 631
Serviets e e e e e e e e e e e e 631

ISBN 3-00-009429-6 www.chartingJava.com 15

16 Contents

How to read Programs? 633

How to write and check Programs? 637

If Something goes Wrong i i i i i e e e e e e e e e e e e e e 637

How to make Programs faster? 639

Further Questions 641

List: Prototypes of Programs 645

Primitive-Types and Control Structures 645

Code Structuring: Proceduralization-Methods 645

Code- and Data-Structuring: Object-Orientation: Class-Object 646

Code Structuring: Object-Orientation: Class-Extension 646

Code Structuring: Multithreading, 646

Code Structuring: Aggregation: Arrays and Container-Classes. 647

Code Structuring: Packaging and Libraries 647

Communication: Messaging e 647

Communication: Streams and Pipes, Serialization (package java.io) 647

Communication: Component/Bean-Based Programming, Documentation 648
Communication: Computer-to-Computer: IP (Internet Protocol)-Networks

(packagejava.net) e e e e e 648

Java Runtime Environment, Class-Loading and Security: Class-Loading 649

Java Runtime Environment, Class-Loading and Security: Policy-Based Security . . . 649

Java Runtime Environment, Class-Loading and Security: Security by Data-Processing649
Single User Interface: Graphical User Interface (GUI)

(package java.awt ,javax.SWiNng) . . . v v vt e e e e e 650

Appendix e e e e e e e e 651

List: Mentioned Packages, Classes and Interfaces 653
List: Syntax-Diagrams 655
Backus-Naur Form (BNF) e e e 655
Syntax- or Railroad-Diagrams e 655

List . . e e e 656

Little Classification of some Notions 657
Sources 659
Sources Ondava e e e e e e e e e e 659
Sourceson the Internet e e e e 659
Sources on Programming e e e e e e e e e e e e e e e 659
Literature e e e e e e e 660

16 www.chartingJava.com ISBN 3-00-009429-6

Preface

First are presented some questions and some attempts to answer them:

What is a computer? A machine that can be ordered to process data. The machine gets data and com-
mands from keyboard, mouse, storage-disks, network-connections (like the Internet). The machine stores
the processed data (a fax sent, an email received) on storage-disks and can show it on output devices like
screen or printer. For more see the text beginning with page 28.

What is a program? A program is given by a sequence of commands which tell the computer what to do.
Programmers store programs by writing those sequences of commands into text-files, as if writing a letter
or an email. First examples of a program are given on page 37 and on page 71.

What is an operating-system? A program that organizes technical-related tasks of hardware-management
(allocating storage-space, accessing hard-drives (also called hard-disks), disk-drives establishing fully-
functional network-connections ...). For more see page 43.

What is a platform? The computer hardware together with the working software of an operating-system
is called a computer-platform (this is considered more extensively in the context of operating-systems).

What is Java? The term Java may be heard to be describing the entire virtual platform! given by the
Java Runtime Environment (JRE, past page 51). Or the name Java may be used for the entire Java De-
velopment Kit, a software-kit that enables a programmer to write programs in the Java programming-
language. But the term Java may also denote the Java programming-language. (For more information
on programming-languages see pages around page 37.)

There are several overlapping, sometimes also rather fragmented, approaches to a multi-faceted piece of
knowledge like the Java programming-language:

Handbook view: Notions are presented as far as possible in their strict logical dependence, assuming
that the reader furnishes some familiarity with the concepts. The topics are usually covered exten-
sively in an analytic, often rigid way. The =& =& Java Language Specification [JLS2] may be an
example of a publication with such a view.

Reference view: References collect notions, more or less commented, in a dictionary-like presentation,
sometimes in the form of an index or a glossary. Examples are the ™&) =& Java Platform API
Specification [JPAPIS] or the Java Developers Almanac [JDA].

Practical/Textbook view: Learning with examples that introduce and illustrate concepts. Synthetic ex-
periences and experimenting becomes possible as part of homework problems. The Online Tutorials
on Sun’s Java-related Internet-site (http://java.sun.com) can be seen as examples for this kind
of approach.

Programmed Learning (of practical skills): Learning in a textbook way by predominantly solving tasks
under written guidance. Some certification books may represent examples for this approach. Search
for “Java certification” in the Internet.

Theory-Oriented This means predominantly learning concepts of programming. In this context practical
applications would distract from the central idea. Example: Algorithms (sorting, cryptography,
routing packages of bytes through networks) can be formulated in many different programming-
languages, their ideas remains the same. Many books with the notion “Algorithms” in their title
may fit into this category.

This classification could make a reader aware of the choices and possibilities when searching for informa-
tion. This present text could be classified as a textbook, although within the sections titled “Concept: ...”
this text attempts a theory-related introduction to the notions.

1A computer-platform runs a program, called the Java Runtime System (JRS) that makes the computer mimic another platform:
the so-called Java Runtime Environment (JRE).

17

18 PREFACE

This Book

This book tries to present a reasonable broad approach to computers, networks and Java programming
(Java 2 Standard Edition, Version 1.4. The Java 2 Micro Edition (J2ME) and the Java 2 Enterprise
Edition (J2EE) haven’t been covered here.). As a result of some reading of this book, a beginner should
be able to categorize notions of that field and be ready for learning advanced programming techniques.
The text works as a collection of concepts and their transformation into the Java language. Marginal
or advanced topics have been deliberately omitted. The Java programs presented are prototypes, maybe
inviting to be changed and to be extended by the reader. All in all, the text should give a fast practical
access to the Java language and its basic concepts. This book represents no atlas, rather a collection of
charts.

Structure

The text has been structured into conceptual sections and Java-specific sections. Conceptual sections de-
scribe general notions and give an overall idea of the content. The knowledge of these sections may be
also applicable in non-Java contexts. The Java-specific sections demonstrate the realization of those con-
cepts in the case of the Java programming-environment. — Headers of the parts and sections of the book
denote the main view-point of these passages. Nevertheless some extensions of those main ideas can be
found in other parts of the book. But these extensions are bound to their respective main passage by cross-
references, so that they should be easily relatable. — Many programs have their descriptions added to
the program’s (source-)code as comments. This may better integrate the programs into the text and may
make it straightforward to identify program-specific information. — Concepts and principles are intro-
duced predominantly without referring to any special programming-language. Those paragraphs should
furnish the theory that makes much of the &) =& Java Platform API Specification self-explaining.
(See the concept of color on page 522 which gives some of the basic information used in the Java-class
java.awt.Color) — The text presents simple procedural programs first; the structuring of code with
methods, classes and threads comes later. — To keep the ideas above in a good order, some notions of
the Java language are anticipated at times (especially the construct of a main() -method inside a class-
declaration, being indispensable when writing regular programs.). — All the examples can be refined and
extended and to get practice in Java; the reader may benefit from doing some creative work with them.
— The text allows the reader several lines of access to spot specific information:

e Table of Content

e Index

e Chapter and Section Introductions/Summaries should make a small text-booklet of an overview
e Images as a picture book of ideas

e Most of the gray frames are part of a glossary. Related details can be found in the context of these
gray frames.

e List of classes or interfaces introduced (in the Appendix)
e List of Programs (in the Appendix)

e List of Syntax-diagrams (in the Appendix)

Another approach may be taken by browsing through the text, then checking and maybe even extending
the programs, thereby referencing the text if necessary. A text on the Java Application Programming
Interface (API) available for parallel reading may give details which have been deliberately omitted in
this text. Some of those details also may have been changed at the time this text has been published.

Content

The central parts of that book are basic programming, structuring source-code, communication between
computers, security and single user interfaces:

18 www.chartingJava.com ISBN 3-00-009429-6

THIS BOOK 19

Computer Communication

network connection
modem,ISDN-card,Ethernet—,DSL-connection

Basic Programming
Structuring source—code

Single User Interface

Computer

Security

The first chapters describe the building elements of the Java language-expressions and statements. These
building elements do not differ very much from the basic structures in languages like C/C++, Pascal or
COBOL. — Then chapters titled Proceduralization, Object-Orientation, Multithreading, Packaging and
to a certain extent the chapter about communication (messaging, streaming, component-programming)
consider the structuring of code.

A computer-model is introduced to envision the hardware- and software-context in which Java is running.
Basic programming introduces to basic programming notions (variables and their creation, expressions
like assignment) and their realization in Java. Control structures essentially constitute the acting source-
code (if-then- and loop-statements), the rest of the items describe methods to structure and organize the
code:

Proceduralization means sorting out a relatively independent sub-task and giving that sub-task a name
of its own. This introduces the notion of a Java-method (in Pascal or C/C++ a function or a procedure).
The idea is to give reusable chunks of code a name, and to call that piece of code again as needed
(page 115).

Object-Orientation (page 131) develops the idea of code-reuse in different directions: One aspect means
furnishing data together with the methods to manipulate the data; this also means extending the
notion of a type of a variable. Another aspect means designing code for extensibility as another way
to organize code for reuse. A third aspect means organizing or indexing code in a hierarchy for
easier reference. If larger programming tasks have to be solved in a collaborative approach by several
persons, then object-oriented structuring of code may prove to be an advantageous approach.
Multithreading (page 197) means running independent sub-tasks parallel on multiple processors; and
letting them communicate with each other: This means, for example, that some threads wait for informa-
tion another thread generates.

Packaging (page 239) describes collecting code in a software-library, this just means collecting several
meaningfully-related entities of code (Java-classes) and giving them a common surname for easier refer-
ence.

Leaving the elements of the core language-functionalities opens a field of selected issues: The part about
Communication (page 271) includes a description of how to realize a delegation event-model consisting of
source, message and drain. Throwing objects, especially so-called exceptions or errors, happens within a
Java-internal communication-infrastructure. The concept of a stream may describe a one-way buffer of
incoming- or outgoing data. Wrapping streams includes the idea of “on-the-fly” processing of stream-data
(after reading in-, before writing out the data).

Basics of the CPU-to-CPU communication (computer-networks, page 337) stress TCP/IP-communication.
Java-specifics like Remote Method Invocation (RMI) are introduced.

Part of the text also considers how to turn a file on the hard-drive, maybe downloaded from a network,
into a program ready to be run. This part of activation of program-code is also called “class-loading”
(page 431). The area of computer-related security (page 447) is considered by trying to answer questions
like the following: How to control a user’s access or a fellow program’s access to hardware and software
on a computer-platform, especially in the Java Runtime Environment (JRE), the Java virtual platform.

Finally, single user interfacing (page 507) introduces concepts and examples of how monitor, keyboard,

ISBN 3-00-009429-6 www.chartingJava.com 19

20 PREFACE

mouse interact with Java and the end-user. There, the Model-View-Controller (MVC)-concept describes
another way of structuring Java source-code. The Appendix may be seen as collecting the remainder.

Limitations

This book tries to get the concepts clear and give a basic introduction that helps the reader to get own
programming experiences. The book does not provide exhaustive information on the Java language like
any handbook or reference book. For in-depth systematics see the =™E) =& Java Language Specification
[JLS2] or other Java Language References. Thus, ramifications of the Java language and Application
Programming Interfaces (APIs) are left to be found in the &) =& Java Platform API Specification
[JPAPIS] and inside handbooks on this subject as mentioned in the Appendix. This especially concerns
information which Java version (1.0.1, 1.1, 1.2, 1.3, 1.4) offers which options.

This text presents no in-depth description of standard software-libraries of Java (Application Program-
ming Interfaces (APIs) of Java). For exhaustive information see the books from Addison-Wesley or
O’Reilly. For an index-like compilation of the software-libraries see the online-documentations from Sun
Microsystems Inc. or the Java Developer’s Almanac [JDA].

The book is based on the second edition of the &) ®&E) Java Language Specification [JLS2] and
covers the Java 2 Standard Edition (J2SE) (not the Java 2 Micro Edition or the Java 2 Enterprise
Edition). Only the Java 2 Standard Edition (J2SE) has been considered in this book, aspects of the Java 2
Micro Edition (J2ME) and the Java 2 Enterprise Edition (J2EE) have been omitted. The implementation
and some aspects of the Java design may be subject to criticism; this book has been written in the be-
lief that the drawbacks are well outweighed by the advantages when comparing Java to other existent
programming-environments.

Algorithms (roughly identifiable as the language-independent version of a program), such as sorting
algorithms or cryptographic algorithms, are not described in this text. See the Appendix for hints on
sources of algorithms.

The writing of source-code as presented here, does not show how to organize the writing of a large
software-project. This field is usually treated in books about Object Oriented Design of programming
tasks. No extended discussion of component-software is to be found; neither are mentioned other means
of structuring code independently of a programming-language, for example the UML (Unified Modeling
Language).

Documents, databases, their formats, production and handling, and image-manipulation are not
covered in this text. This means NO DOCUMENT PROCESSING, NO DATABASES, NO IMAGE-PROCESSING.
This text provides no information on how to program text-editors and related tasks (character encod-
ings surpassing the ASCII?-format, the Unicode-format or a Unicode Transformation Format (UTF) for
Unicode-characters, font-management, document-types like the Portable Document Format (PDF), Ex-
tended Markup Language (XML), drag and drop implementation). — Relational- or object-databases are
not mentioned, neither has been introduced the Java DataBase Connection (JDBC), a Java software-
library for accessing data in relational databases with the Structured Query Language (SQL).

References to hard- and software are limited to those products that are likely to be used in a more or less
average home-environment: Mouse, keyboard, monitor. The text assumes that the reader has comfortable
access to a computer, an installed operating-system, at least a dial-up Internet-connection and maybe two
computers connected with each other over, for example, an Ethernet connection. The additional Java
software should be downloadable for free from the Internet. Differences between platforms (Unix-type
like Linux, WindowsN'T/95/98, Mac OS) are not treated exhaustively.

Many of the introduced programs have been tested on 233MHz G3-Mac and Intel-type machines. Gen-
erally the programs are written reduced to the essentialities, so that they should present the gist of the
functionality they intend to demonstrate.

The Reader

A reader might have the following interests or goals: Know what the Java language means and to be
introduced to some of its central capabilities. Wants to get an overview and a short introduction. Wants
to check the prototype programs and use them as a basis for own programming efforts. Know how to
install a working, cost-free Java Runtime System (JRS) and development-environment on Apple, Linux
and Windows platforms. Use another book for learning programming algorithms and other advanced
programming-techniques (for example text- and image-processing or database-programming).

2 American Standard Code for Information Interchange

20 www.chartingJava.com ISBN 3-00-009429-6

THE AUTHORS 21

The Authors

Almost every view on a subject cannot be complete or ignore the descriptor’s point of view. The non-
completeness aspect clearly can be seen by the limited size of the book. The authors point-of-view clearly
sets its limits and preferences. The goal was to establish a foundation from which the wealth of the Java
programming system can be explored without getting lost in too many details.

Conventions

The names of subjects are chosen to avoid unnecessarily specialized jargon. Nevertheless in some contexts
the usage of notions may vary from that chosen in this book. The index and the explanations in the gray
rectangles try to take account of that. The symbol ®&D means, there exists an online-source for further
information and =& =& indicates that this online-source can be considered as highly recommendable
for further reading.

Source-code of the (Java) programming language and the content of text-files are presented in typewriter-
font .

Parts of the text, that represent commands or programs (in typewriter-font), may contain passages
written in i t al i cs or passages parenthesized by “smaller than” (<) and “larger than” (>) symbols. This
indicates that these passages are placeholders for values and have to take a concrete value to give a valid
expression. Often these placeholder-passages indicate what values they expect. For an example see the
graphic past the program-code on page 71. And see the code fragments at the beginning of the section
on the switch-statement on page 107. In the part of the text about networking and HTML-formats, the
“smaller than” (<) and “larger than” (>) symbols are also used as so-called HTML-tags (page 370). In
Bachus-Naur expressions, which should be clearly discernable from HTML-text or terminal-commands
or programs, the “smaller than” (<) and “larger than” (>) symbols indicate that the enclosed entity occurs
one or multiple times (page 655).

Arrows (—), within the text of the gray boxes, denote notions which have been referenced by the index
with a capital letter. In other context, arrows within the text can be substituted by the words “is super-
class of” (see page 615, following the graphic).

ISBN 3-00-009429-6 www.chartingJava.com 21

22

PREFACE

22

www.chartingJava.com

ISBN 3-00-009429-6

Part I.

Computer-Models

23

25

Computer-Models — Wanting to know all about a computer may resemble wanting to know all about a
car. Most people want to use the car for driving, not as an object of study to become a car-mechanic. So,
the average user of a car has limited skills for repairing or servicing the car. To the average user the
car represents just an object that helps to accomplish personal purposes. Therefore, every motorist has a
well-developed set of ideas about a car’s behavior, maybe not as refined as that of a test-driver, but enough
to serve the daily needs well.

The relation between a user of a computer-system and the computer exhibits aspects of the same kind.
The user of a computer-system confines her- or himself to those few skills which are necessary to get the
computer-system’s support in accomplishing the daily real-world tasks. The notion of a computer-model
intends to give this collection of skills and ideas a consistent environment.

The following part of the text considers simpler computer-models, computer-languages, operating-systems
and file-systems. Extensive information about end-user interfaces of various operating-systems can be
found in the last part of this text beginning with page 507.

ISBN 3-00-009429-6 www.chartingJava.com 25

26

26

www.chartingJava.com

ISBN 3-00-009429-6

Elementary Computer-Models

Elementary Computer-Models — First, this table shows different ways to use a computer:

recreationalist uses a computer-game with joystick, CD-ROM, moni-
tor

writer uses a text-formatter with keyboard, monitor, black
and white printer

layouter in press uses graphics-software with scanner, printers

application-programmer uses interpreter, compiler, debugger, | with keyboard and monitor,

component-construction software to pro- | modems
gram: graphics-software, text-formatters
or computer games for an operating-system

environment
utility-programmer programs drivers, assembler, interpreter, | with keyboard and monitor,
infrastructure-programmer compiler, debugger, low-level network- | modems
system-programmer software, operating-systems for a specific

hard- or software

| person, task

uses software | with additional hardware

Different users have different ideas how they access their computers and receive services from their
computers, they have different ideas about their computer’s physical components and software function-
alities. End-users, who want to be helped by the computer in solving some of their real-life-tasks cannot
be required to have the knowledge of a programmer. To be able to discern pure technicalities from skills
for effectively solving real-life-problems with the computer, often requires a considerable knowledge in
advance.

Depending on the software or hardware the user faces, each user assigns the computer-system a different
set of functionalities. Such a set of functionalities can be described coherently by constructing an appro-
priate computing-model. In that sense the model can be used to “explain” the specific computing system
(to the user).

Some computing models are simple, like a computing model for a video

A part of a game player’s computer model 3 h
game. Although the computing-model for the video game tells what can

' e done, it doesn’t reflect complexity and richness of the video display
[*up (@]t be d td t reflect lexit; d rich f the video displ
left right and it does not tell how to acquire the skill to master the game.
[down The more functionalities the software furnishes, the longer the list of
fire commands and the more difficult it may be to remember them. Even

well-designed models have to reconcile contradicting perspectives: Sim-
plicity of design makes learning and standard work fast, complexity of the models slows the learning-
process but adds flexibility, opening ways to more efficient work.

27

28 ELEMENTARY COMPUTER-MODELS

A Computer-Model for Programmers

A Computer-Model for Programmers — For programmers an introductory model of a computer can be
made fairly simple:

ports make input and output posssible
and are addresses of interface hardware

P
processor ﬁ

uses commands

to convert data ——— RAM

stores commands and data
in parts of the processor’s address space

. Computer)

The processor, its address-space, within that space the Random Access Memory (RAM) and the ports are
given here as central notions of a computer-model. Input-data appears in the Random Access Memory
(RAM) of the computer via ports, that occupy address-space which the RAM does not use. Output-data
leaves the computer’s Random Access Memory (RAM) by transferring the data to addresses occupied by
output-ports. The Random Access Memory (RAM) stores the data. Part of the data gets recognized by the
processor as sequences of processor-commands. Thus the processor can convert, manipulate or process

data autonomously. A processor? manipulates, changes data which has been stored in the Random Access
Memory (RAM).

Processor: The piece of hardware inside a computer that manipulates the data it fetches from the Random
Access Memory or hardware-ports. After the processor has fetched and manipulated the data, the new
data is put back into the Random Access Memory or written into a port that represents a connection to
a hard-disk or a computer-network. Multiprocessor-computers have multiple processors built into them,;
their function has to be coordinated by appropriately designed hard- and software.

CPU: Acronym for Central Processing Unit. 1. The processor(s) of a computer; the part of a computer-
hardware that does the main data-manipulation. 2. A Central Processing Unit consists of the micropro-
cessor(s), the Random Access Memory (RAM) and busses that connect both with Input/Output interface-
hardware. 3. An entire personal computer, excluding keyboard and monitor.

Again: The acronym CPU stands sometimes for the processor alone, sometimes for the processor and the
RAM and more seldom even for an entire personal computer (which includes an internal hard-drive but
without monitor and keyboard).

The command-sequences, that make the processor work on the data, are stored together with the data-to-
be-manipulated in the Random Access Memory (RAM).

RAM: Acronym for Random Access Memory. Often simply denoted “memory”. Stores data, which includes
coded information and sequences of processor-commands. Generally, the processor can access each unit of
information of the Random Access Memory directly. Access to data usually happens fast (in comparison
with devices like hard-disks and network-connections). But data residing in Random Access Memory
usually is stored non-persistently, that means the data is lost if not saved to a hard-disk before turning
off the computer’s power.

3Most processors in personal computers are, technically speaking, special integrated circuits — so-called chips — that have been
given a set of very general functions. An integrated circuit is made of a collection of connected transistors and other electronic
elements built into a chip primarily made of crystalline silicon. (“silicone” denotes a rubbery compound of silicon)

28 www.chartingJava.com ISBN 3-00-009429-6

A COMPUTER-MODEL FOR PROGRAMMERS 29

Computer—System:

monitor

|

I—

0o
persistent storage device —
(Hard Disk, CD-ROM,DVD)

network connection
(modem,ISDN-card,Ethernet-,ATM-connec

o
Computer — —
XZ scanner

speakers

keyboard and mouse

mircrophone
camera

A computer-system is made of the computer itself and additional devices like low data-rate input/output computer-
(I/0) devices, for example keyboard and mouse, and higher data-rate I/O devices like monitor, storage system
devices (hard-drive, CD-ROM), printer, scanner, microphone, loudspeakers, camera, modem or network-

card (usually of the Ethernet-technology). The maximal data-rate of the communication-lines between
components of a computer and the maximal data-rate of the components itself determine the performance

of parts or the overall computer-system. (Analogously to a network of several computer-systems which

draws its overall performance from the data-rate of the data-lines and the rate with which the individual
computers can process the data.) That’s much like a system of pumps and pipes for transporting water:

The pipes’ capacities have to measure up to the pump’s power and vice versa.

Computer System: Communication Lines A communication-line, given by a bundle of wires (more than two usu-
—— —] ally around fifty or hundreds), is called “bus”. Those lines are usu-
@ - ally more efficient than the single lines. Busses generally are used be-
tween hardware-components of a computer-system that have to main-
tain a high data-rate. Communication lines of different technologies are
connected either by a “bridge” or by an “interface” (card); that’s an
electrical circuit for establishing the connection between otherwise un-
reconcilable types of communication-lines. If the user is not concerned
with modifying the hardware of the computer, then there won’t occur
many occasions for handling hardware-interfaces.

persis a ice
(Hard Disk, CD-ROM,DVD)

ersistent storage devi
g ‘ monitor H

Above have been described some conceptual similarities of different computer-systems. But different
types of computer-systems differ significantly in technical details. For example, different makes of pro-
cessors take different sets of commands.

Especially the technical development, which furnishes faster and hopefully easier-to-use hardware, makes
older technical architectures obsolete. Consider some averaged performance-data of computer-systems:

| year | processor-speed (roughly in commands per second): | Random Access Memory size: |

1990 20MHz 4MB
1998 200MHz 40MB
2002 2000MHz 400MB

Next to the computer’s internal bus that connects the processor and the Random Access Memory, there are
communication-“lines” within the computer: The PCI (Programmable Communication Interface) with up
to 64 parallel data-lines yielding a data-flow of up to 132MB per second. The EIDE (Enhanced Integrated
Device Equipment) bus with up to 33MB per second. Also, predominantly for adding external hardware
to a given computer, are mentioned the SCSI (Small Computer Systems Interface) bus with up to 40MB
per second for connecting up to seven external devices to the Central Processing Unit. The IEEE1394-line
(also called FireWire or iLink) with up to 50MB per second and the USB (Universal Serial Bus) with up

ISBN 3-00-009429-6 www.chartingJava.com 29

30 ELEMENTARY COMPUTER-MODELS

to 15MB per second as well as the Ethernet hardware with up to 100MB per second. The technological
data is changing and may have changed when this has been published.

The acronym MHz (Mega-Hertz) indicates the processing-speed and the acronym MB (MegaByte) indi-
cates the volume of the data. For what purposes may be possibly needed such information? When buying
a computer, various computer-systems can be roughly compared. Then, using a computer, performance
limits can be assessed, thus making it possible to quantify the volume of the Random Access Memory
(RAM) or to estimate the dimension of a needed storage-device. For example, error-messages like “out of
memory” may get a clearer meaning and may actually result in adding RAM to the computer. For more
on these units see the subsections past the next for “M/Hz”, and for more on the unit of the data-“volume”
(MB) see the page 34.

Computers with Multiple Processors and Networks

Computers with Multiple Processors and Networks — Multiprocessor-computers consist of several pro-
cessors, connected with each other by the fast computer-internal bus-system. These multiple processors
(usually 2, 4, 8, or 16) use more or less the same Random Access Memory (RAM) and usually can ac-
cess the same hardware-ports. Non-expensive consumer computers usually are equipped with only one
processor. But those one-processor-computers can emulate a multiprocessor-environment to allow multi-
threaded programming too (see page 197 for multi-threaded programming in Java).

Networks connect entire computers mostly by
external wiring, for example with versions of
Ethernet-hardware, or even by wireless radio-
connections. These external connections among
in a computer network computers usually do transfer data slower than
allowing software to do distributed computing the internal bus-systems of the individual com-
puter. The difference between a network and
a multiprocessor-computer also can be formu-

Single Processor Computer:

=
:

Multi-Processor Computers:

£l = —— 30 En lated as follows: Each computer in a network
{} has its own Random Access Memory (RAM). In
g {F) g a multiprocessor computer the processor have

to share the Random Access Memory. For more

about networks see the part of this text, begin-
ning on page 337.

Summary: Computer-Models

Summary: Computer-Models — There are imaginable different computer-models; one of those models,
that gives many details independently of the technology, has been presented more extensively: The pro-
cessor takes commands and data and returns transformed data. The Random Access Memory stores
data, part of that data are sequences of processor-commands. Communication-lines like busses trans-
fer the data between components of the computer-system. Why, next to Random Access Memory (RAM),
are needed other storage-devices such as hard-drives (magnetic disks) or CD-ROMs? RAM works fast,
is expensive and looses the data (and programs) in the moment the computer-system’s power is turned
off. Compared to RAM, hard-drives are inexpensive and hold the data permanently (persistently) until
deleted by the user. For storage-purposes their slowness doesn’t matter. CD-ROMs are what the name
indicates, Read Only Memories on compact-disks of about 600MB. They are easy to transport and their
data cannot be changed, which can be seen as a security advantage. The same applies to DVD-RAMs and
DVD-ROMs, but they can store about 5000MB, about ten times the data-volume of a CD-ROM.

How to start a computer? The model described above lacks any related description. In the technical
context, this process requires additional features to be included into the model. An end-user may answer
that question saying: “By pressing the power button.” This turns out to be a workable and rather sensible
answer on the level of the end-user’s model and working-requirements.

A Computer-Model for Hardware Technicians

A Computer-Model for Hardware Technicians — Even hardware technicians use computer-models. Their
models are much more refined towards the technical aspect of computing.

30 www.chartingJava.com ISBN 3-00-009429-6

A COMPUTER-MODEL FOR HARDWARE TECHNICIANS 31

The graphic below is meant only for getting a feeling for the technicalities involved. The large rectangles

represent individual silicon-chips. Each line represents a single electrical connection. The symbol that

looks like a little sandwiched rectangle, in the lower left part of the graphic, near the number 22, rep-

resents the oscillating crystal, which gives the frequency (also called clock-rate) according to which the

computer works. The number of times an event reoccurs per time-interval is called frequency. The crystal frequency
inside the computers wobbles millions of times per second. This frequency of oscillation (millions of times

per second) of such a crystal is called one Mega-Hertz. An average car-engine turns about hundreds of Mega-Heriz
times per second (thousands of rotations per minute), which is slower about a factor ten-thousand than

the frequency of a computer’s oscillating crystal.

Ic1 :
9 PO.
RESET .
1 80C32
> PL0O :
+1PLL P20 56 am0 24 5
P2.1
7 P1.2 21 All 23 11
P2.2
5 P1.3 22 A12 22 12
P2.3
5 P14 23 Al13 21 13
P2.4
7 P1.5 24 Al4 20 14
P2.5
A P1.6 25 Al15 19 15
P2.6
P1.7 26 Al6 18 16
P27 (15 L
EANVP
17
Lox ox L

[l

ISBN 3-00-009429-6 www.chartingJava.com 31

32

ELEMENTARY COMPUTER-MODELS

32

www.chartingJava.com

ISBN 3-00-009429-6

